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Bounded queues (aka ring buffers) are everywhere…
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Story 1: Tracing overhead and operation interference

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h", O_RDONLY|O_CLOEXEC) = 3 
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 48 
fstat(3, {st_mode=S_IFREG|0644, st_size=1036, ...}) = 0 
pread64(3, "/* Define intN_t types.\n   Copyr"..., 1036, 0) = 1036 
rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0 
close(3)                                = 0 
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0 
openat(AT_FDCWD, "/usr/local/include/genmc/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = -1 ENOENT 
openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = 3 
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 49 
fstat(3, {st_mode=S_IFREG|0644, st_size=1048, ...}) = 0 
pread64(3, "/* Define uintN_t types.\n   Copy"..., 1048, 0) = 1048 
rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0 
close(3)                                = 0 
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0 
brk(0x55c3618b9000)                     = 0x55c3618b9000 
brk(0x55c3618da000)                     = 0x55c3618da000 
futex(0x7f185315087c, FUTEX_WAKE_PRIVATE, 2147483647) = 0 
futex(0x7f185314b458, FUTEX_WAKE_PRIVATE, 2147483647) = 0

Ring buffer
Collect traces and 

Generate log

Application 
performance

Report trace 
Information

Trace output

Application 
Thread

In-house OS with a new tracing tool 
• Ring buffer used to collect traces 

• Used to generate application profile 

• Reporting must be fast!

In production! 
Must work normally
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Problem 
• Consumer slowdowns producer!
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Interference sources — Existing work 

enq

update
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Examples: 
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Linux ring buffer 
Meta FollyQ 
SCQ

Mostly neglected
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• New framework for mobile devices 
• Few cores and many threads 

• Communication via ring buffers 

• Problem with initial implementation: 
• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations
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• New framework for mobile devices 
• Few cores and many threads 

• Communication via ring buffers 

• Problem with initial implementation: 
• In-order operation limits performance 

• Out-of-order operations are challenging! 
• See paper for related work

Story 2: Oversubscription and out-of-order operations
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Product stable on x86 for years 
• Must migrate to Arm (TaiShan servers) 

• Internally uses old DPDK ring buffer 

• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm
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Product stable on x86 for years 
• Must migrate to Arm (TaiShan servers) 

• Internally uses old DPDK ring buffer 

• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm
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Fence

Decision: too high risk of 

upgrading DPDK ring buffer
Consequence: 
• Annoying weak memory bug 
 due to a few missing fences 

• More than 6 person-month to fix it 

• Decision wasn’t the best



Think hard and document 
For example, printk_ringbuffer

How do people develop for WMM?
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Think hard and document 
For example, printk_ringbuffer

How do people develop for WMM?
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Most just ignore topic 
And wait to see what happens

What about using tools? 

We are in 2022! 

There are scalable model checkers for WMM! 

e.g., GenMC, Dartagnan, VSync
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• Focus on enq-deq interference 

• Support for out-of-order operations 

• Verified for WMMs, pragmatically
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Bonus features 

• Single/multi producers/consumers 

• Fixed- and variable-sized entries 

• Retry-new and drop-old modes 

• Use of efficient atomic operations 
• FAA and MAX (ARMv8.1 LSE) 
• No CAS at all if MAX available



Agenda 

Motivation 

Stories and Challenges 

Interference, Out-of-order operations, Correctness on WMMs 

BBQ — Block-based Bounded Queue 

Insights to Tackle the Challenges 

Selected Evaluation Results
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BBQ — Block-based Bounded Queue

HeadTail

Block 
Head

Block 
Tail

Entry 
Head

Entry 
Tail

• Ring buffer split into blocks 

• Block Head points to  
current producer block 

• Block Tail points to      
current consumer block 

• In each block:  Entry Head 
and Entry Tail
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Many cool tricks in the paper: 

• update block and entry indices at 
the same time without D-CAS 

• Avoid ABA issues with versioning 

• Cache block indices for speed



BBQ Learnings
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25

BBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

~10 atomics

Correctness on WMMs with practical verificationBBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

BBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

More than 20 atomics

BBQ is not easy to digest



Correctness on WMMs with practical verification

• Long stress testing 
by engineers 

• Model check corner cases on WMM   
by engineers  

• Identification of corner cases  
by WMM experts and engineers 

• Only a few corner cases necessary 
queue full/empty, FIFO, wrap-around 

• 3 bugs found model checking them 
Not found while stress testing 

• Reproducible on real hardware 
Test cases were built in retrospect 
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Micro-benchmark Results — SPSC

• x86 machines with 88 hyper-threads 
• 8 bytes data size, 32k bytes memory usage 
• simple: 11.3x to 42.4x higher throughput

Compared against 5 state-of-the-art bounded queues
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complex

• complex: at least 2x higher than FollyQ



DPDK Test Suite (DTS) — Multiprocess benchmark
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Te
st

er
TR

ex
 10GB 

link

10GB 
link

Traffic 
Generator Device Under Test (DUT)

• Device Under Test 
• One server process 

receiving and distributing packets 
• Two client processes 

performing level-2 packet forwarding 

• Tester and traffic generator run on 
another machine 

• BBQ yields 1.5x throughput of DPDK 



Macro-benchmark Results — Disruptor 

• Compared on three official Disruptor benchmarks 
    Against Java queue, BBQ in Java, and BBQ in C via JNI

• LMAX Disruptor: bounded queue for high-performance trading

• With 32 producers, BBQ yields 3 Mop/s and Disruptor 0.6 Mop/s 
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Wrap up  

20

Large spectrum of scenarios 
• Single/Multi Consumer/Producer 
• Retry-new and Drop-old modes 
• Etc

BBQ is a novel ring buffer design 
• Reduces enq-deq interference 
• Supports out-of-order operations 
• Model checked for WMMs

Greatly outperforms several 
industrial ring buffers

Please look up the paper 
for many more results



Thank you! Questions? 
(BTW, we are hiring in Dresden and Munich…)


