
BBQ: A Block-based Bounded Queue
for Exchanging Data and Profiling
Jiawei Wang, Diogo Behrens, Ming Fu, Lilith Oberhauser,

Jonas Oberhauser, Jitang Lei, Geng Chen, Hermann Härtig, Haibo Chen

Bounded queues (aka ring buffers) are everywhere…

2

Crucial for the
performance and correctness
of systems and applications!

Why are they important to us?

Crucial for the
performance and correctness
of systems and applications!

Why are they important to us?

Next, 3 ring buffer stories
from Huawei software development

Story 1: Tracing overhead and operation interference

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h", O_RDONLY|O_CLOEXEC) = 3
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 48
fstat(3, {st_mode=S_IFREG|0644, st_size=1036, ...}) = 0
pread64(3, "/* Define intN_t types.\n Copyr"..., 1036, 0) = 1036
rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0
close(3) = 0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
openat(AT_FDCWD, "/usr/local/include/genmc/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = -1 ENOENT
openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = 3
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 49
fstat(3, {st_mode=S_IFREG|0644, st_size=1048, ...}) = 0
pread64(3, "/* Define uintN_t types.\n Copy"..., 1048, 0) = 1048
rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0
close(3) = 0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
brk(0x55c3618b9000) = 0x55c3618b9000
brk(0x55c3618da000) = 0x55c3618da000
futex(0x7f185315087c, FUTEX_WAKE_PRIVATE, 2147483647) = 0
futex(0x7f185314b458, FUTEX_WAKE_PRIVATE, 2147483647) = 0

Ring buffer
Collect traces and

Generate log

Application
performance

Report trace
Information

Trace output

Application
Thread

In-house OS with a new tracing tool
• Ring buffer used to collect traces

• Used to generate application profile

• Reporting must be fast!

In production!
Must work normally

4

Story 1: Tracing overhead and operation interference

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h", O_RDONLY|O_CLOEXEC) = 3
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 48
fstat(3, {st_mode=S_IFREG|0644, st_size=1036, ...}) = 0
pread64(3, "/* Define intN_t types.\n Copyr"..., 1036, 0) = 1036
rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0
close(3) = 0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
openat(AT_FDCWD, "/usr/local/include/genmc/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = -1 ENOENT
openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = 3
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 49
fstat(3, {st_mode=S_IFREG|0644, st_size=1048, ...}) = 0
pread64(3, "/* Define uintN_t types.\n Copy"..., 1048, 0) = 1048
rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0
close(3) = 0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
brk(0x55c3618b9000) = 0x55c3618b9000
brk(0x55c3618da000) = 0x55c3618da000
futex(0x7f185315087c, FUTEX_WAKE_PRIVATE, 2147483647) = 0
futex(0x7f185314b458, FUTEX_WAKE_PRIVATE, 2147483647) = 0

Ring buffer
Collect traces and

Generate log

Application
performance

Report trace
Information

Trace output

Application
Thread

In-house OS with a new tracing tool
• Ring buffer used to collect traces

• Used to generate application profile

• Reporting must be fast!

In production!
Must work normally

4

Problem
• Consumer slowdowns producer!

Interference sources

Head

5

Tail

Ring buffers are arrays with indices

Interference sources

Head

enqueue enqueue enqueue

5

Tail

Ring buffers are arrays with indices

Interference sources

Head

enqueue

Increment
Index

enqueue enqueue

5

Tail

Ring buffers are arrays with indices

Interference sources

Head

enqueue

Increment
Index

enqueue enqueue

 Enq-Enq
interference
(contention)

5

Tail

Ring buffers are arrays with indices

Interference sources

Head

enqueue

Increment
Index

dequeue

Read index
Is queue empty?

enqueue enqueue

 Enq-Enq
interference
(contention)

5

Tail

Ring buffers are arrays with indices

Interference sources

Head

enqueue

Increment
Index

dequeue

Read index
Is queue empty?

 Enq-Deq
interference

(cache misses)

enqueue enqueue

 Enq-Enq
interference
(contention)

5

Tail

Ring buffers are arrays with indices

Interference sources

Head

enqueue

Increment
Index

dequeue

Read index
Is queue empty?

 Enq-Deq
interference

(cache misses)
.....

enqueue enqueue

 Enq-Enq
interference
(contention)

5

Tail

Ring buffers are arrays with indices

Interference sources — Existing work

enq

update

deq

read
Examples:
DPDK ring buffer
Linux ring buffer
Meta FollyQ
SCQ

Mostly neglected

6

Enq-Deq interference

HeadTail

Interference sources — Existing work

enq

update

deq

read

enq enq enq …

…
updateExamples:

DPDK ring buffer
Linux ring buffer
Meta FollyQ
SCQ

Example:
FollyQ

Mostly neglected

6

Enq-Deq interference Enq-Enq interference

HeadTail HeadTail

Interference sources — Existing work

enq

update

deq

read

enq enq enq …

…
update

FAA

Examples:
DPDK ring buffer
Linux ring buffer
Meta FollyQ
SCQ

Example:
FollyQ

Mostly neglected FAA typically faster than CAS

6

Enq-Deq interference Enq-Enq interference

HeadTail HeadTail

Interference sources — Existing work

enq

update

deq

read

enq enq enq …

…
update

FAA

Examples:
DPDK ring buffer
Linux ring buffer
Meta FollyQ
SCQ

Example:
FollyQ

Mostly neglected FAA typically faster than CAS

6

Enq-Deq interference Enq-Enq interference

HeadTail HeadTail

Interference sources — Existing work

enq

update

deq

read

enq enq enq …

…
update

FAA

Examples:
DPDK ring buffer
Linux ring buffer
Meta FollyQ
SCQ

Example:
FollyQ

Mostly neglected FAA typically faster than CAS

6

Enq-Deq interference Enq-Enq interference

HeadTail HeadTail

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

Allocated
Produced } Head implementation

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

Allocated
Produced

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

enq(A)

Allocated
Produced

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B)

Allocated
Produced

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

C

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

zZZ zZZ

C

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

zZZ

CB

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

CBA

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

CBA

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

CBA

• New framework for mobile devices
• Few cores and many threads

• Communication via ring buffers

• Problem with initial implementation:
• In-order operation limits performance

• Out-of-order operations are challenging!
• See paper for related work

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

CBA

Product stable on x86 for years
• Must migrate to Arm (TaiShan servers)

• Internally uses old DPDK ring buffer

• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8

Product stable on x86 for years
• Must migrate to Arm (TaiShan servers)

• Internally uses old DPDK ring buffer

• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8

Decision: too high risk of

upgrading DPDK ring buffer

Product stable on x86 for years
• Must migrate to Arm (TaiShan servers)

• Internally uses old DPDK ring buffer

• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8

Decision: too high risk of

upgrading DPDK ring buffer
Consequence:
• Annoying weak memory bug
 due to a few missing fences

• More than 6 person-month to fix it

• Decision wasn’t the best

Product stable on x86 for years
• Must migrate to Arm (TaiShan servers)

• Internally uses old DPDK ring buffer

• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8

Decision: too high risk of

upgrading DPDK ring buffer
Consequence:
• Annoying weak memory bug
 due to a few missing fences

• More than 6 person-month to fix it

• Decision wasn’t the best

Product stable on x86 for years
• Must migrate to Arm (TaiShan servers)

• Internally uses old DPDK ring buffer

• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8

Fence

Decision: too high risk of

upgrading DPDK ring buffer
Consequence:
• Annoying weak memory bug
 due to a few missing fences

• More than 6 person-month to fix it

• Decision wasn’t the best

Think hard and document
For example, printk_ringbuffer

How do people develop for WMM?

9

Think hard and document
For example, printk_ringbuffer

How do people develop for WMM?

9

Most just ignore topic
And wait to see what happens

Think hard and document
For example, printk_ringbuffer

How do people develop for WMM?

9

Most just ignore topic
And wait to see what happens

What about using tools?

We are in 2022!

There are scalable model checkers for WMM!

e.g., GenMC, Dartagnan, VSync

Our contributions

BBQ: Block-based Bounded Queue

• Novel block-based design

• Focus on enq-deq interference

• Support for out-of-order operations

• Verified for WMMs, pragmatically

10

Our contributions

BBQ: Block-based Bounded Queue

• Novel block-based design

• Focus on enq-deq interference

• Support for out-of-order operations

• Verified for WMMs, pragmatically

10

Bonus features

• Single/multi producers/consumers

• Fixed- and variable-sized entries

• Retry-new and drop-old modes

• Use of efficient atomic operations
• FAA and MAX (ARMv8.1 LSE)
• No CAS at all if MAX available

Agenda

Motivation

Stories and Challenges

Interference, Out-of-order operations, Correctness on WMMs

BBQ — Block-based Bounded Queue

Insights to Tackle the Challenges

Selected Evaluation Results

11

BBQ — Block-based Bounded Queue

HeadTail

Block
Head

Block
Tail

Entry
Head

Entry
Tail

• Ring buffer split into blocks

• Block Head points to
current producer block

• Block Tail points to
current consumer block

• In each block: Entry Head
and Entry Tail

12

Dealing with interferences

13

enqueue

dequeue

update

update

Block
Tail

Block
Head

Entry
Head

Entry
Tail

Enq-Deq interference

No interference when producer
and consumer in different blocks

Dealing with interferences

13

enqueue

dequeue

update

update

Block
Tail

Block
Head

Entry
Head

Entry
Tail

Enq-Deq interference

No interference when producer
and consumer in different blocks

Block head and tail only read
when moving to next block

Dealing with interferences

enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block
Tail

Block
Head

Entry
Head

Entry
Tail

Enq-Deq interference Enq-Enq interference

No interference when producer
and consumer in different blocks

Block head and tail only read
when moving to next block

Block
Head

Entry
Head

Efficient use of FAA no side effects:
neither rollback nor blocking

Dealing with interferences

enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block
Tail

Block
Head

Entry
Head

Entry
Tail

Enq-Deq interference Enq-Enq interference

No interference when producer
and consumer in different blocks

Block head and tail only read
when moving to next block

Block
Head

Entry
Head

Efficient use of FAA no side effects:
neither rollback nor blocking

Dealing with interferences

enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block
Tail

Block
Head

Entry
Head

Entry
Tail

Enq-Deq interference Enq-Enq interference

No interference when producer
and consumer in different blocks

Block head and tail only read
when moving to next block

Block
Head

Entry
Head

Efficient use of FAA no side effects:
neither rollback nor blocking

Head can move out-of-bounds, no
consequence to following block.

Dealing with interferences

enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block
Tail

Block
Head

Entry
Head

Entry
Tail

Enq-Deq interference Enq-Enq interference

No interference when producer
and consumer in different blocks

Block head and tail only read
when moving to next block

Block
Head

Entry
Head

OK

Efficient use of FAA no side effects:
neither rollback nor blocking

Head can move out-of-bounds, no
consequence to following block.

Dealing with interferences

enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block
Tail

Block
Head

Entry
Head

Entry
Tail

Enq-Deq interference Enq-Enq interference

No interference when producer
and consumer in different blocks

Block head and tail only read
when moving to next block

Block
Head

Entry
Head

OK

Efficient use of FAA no side effects:
neither rollback nor blocking

Head can move out-of-bounds, no
consequence to following block.

Dealing with out-of-order operations

14

Block
Tail

Block
Head

Entry
Head 0/0

Produced/AllocatedEntry
Head

Entry
Tail

Dealing with out-of-order operations

14

Block
Tail

Block
Head

Entry
Head 0/0

Produced/AllocatedEntry
Head

Entry
Tail

Dealing with out-of-order operations

14

Block
Tail

Block
Head

Entry
Head

Produced/AllocatedEntry
Head

2/3

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

3/4

Dealing with out-of-order operations

14

Block
Tail

Block
Head

Entry
Head

Produced/AllocatedEntry
Head

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

3/4

Dealing with out-of-order operations

14

Block
Tail

Block
Head

Entry
Head

Produced/AllocatedEntry
Head

Entry
Head0/0

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

3/4

Dealing with out-of-order operations

14

Block
Tail

Block
Head

Entry
Head

Produced/AllocatedEntry
Head

Entry
Head

2/2

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

3/4

Dealing with out-of-order operations

14

Dequeue calls:
• return BUSY if an enqueue is ongoing

in same block
• succeed when block full or when

Produced = Allocated

Block
Tail

Block
Head

Entry
Head

Produced/AllocatedEntry
Head

Entry
Head

2/2

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

Dealing with out-of-order operations

14

4/4

Dequeue calls:
• return BUSY if an enqueue is ongoing

in same block
• succeed when block full or when

Produced = Allocated

Block
Tail

Block
Head

Entry
Head

Produced/AllocatedEntry
Head

Entry
Head

2/2

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

Dealing with out-of-order operations

14

4/4

Dequeue calls:
• return BUSY if an enqueue is ongoing

in same block
• succeed when block full or when

Produced = Allocated

Block
Tail

Block
Head

Entry
Head

Produced/AllocatedEntry
Head

Entry
Head

2/2

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

Dealing with out-of-order operations

14

4/4

Dequeue calls:
• return BUSY if an enqueue is ongoing

in same block
• succeed when block full or when

Produced = Allocated

Block
Tail Block

Head

Entry
Head

Produced/AllocatedEntry
Head

Entry
Head

Entry
Tail

2/2

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

Dealing with out-of-order operations

14

4/4

Dequeue calls:
• return BUSY if an enqueue is ongoing

in same block
• succeed when block full or when

Produced = Allocated

Block
Tail Block

Head

Entry
Head

Produced/AllocatedEntry
Head

Entry
Head

Entry
Tail

2/2

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

Dealing with out-of-order operations

14

4/4

Dequeue calls:
• return BUSY if an enqueue is ongoing

in same block
• succeed when block full or when

Produced = Allocated

Block
Tail Block

Head

Entry
Head

Produced/AllocatedEntry
Head

Entry
Head

Entry
Tail

2/2

Entry
Tail

Enqueue calls:
• do not wait for others in same block to

complete
• can move to next block even if current

block has ongoing enqueues

Many cool tricks in the paper:

• update block and entry indices at
the same time without D-CAS

• Avoid ABA issues with versioning

• Cache block indices for speed

BBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

BBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

~10 atomics

Correctness on WMMs with practical verificationBBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

BBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

More than 20 atomics

BBQ is not easy to digest

Correctness on WMMs with practical verification

• Long stress testing
by engineers

• Model check corner cases on WMM
by engineers

• Identification of corner cases
by WMM experts and engineers

• Only a few corner cases necessary
queue full/empty, FIFO, wrap-around

• 3 bugs found model checking them
Not found while stress testing

• Reproducible on real hardware
Test cases were built in retrospect

Agenda

Motivation

Stories and Challenges

Interference, Out-of-order operations, Correctness on WMMs

Block-based Bounded Queue (BBQ)

Insights to Tackle the Challenges

Selected Evaluation Results

16

Micro-benchmark Results — SPSC

• x86 machines with 88 hyper-threads
• 8 bytes data size, 32k bytes memory usage
• simple: 11.3x to 42.4x higher throughput

Compared against 5 state-of-the-art bounded queues

17

simple

Micro-benchmark Results — SPSC

• x86 machines with 88 hyper-threads
• 8 bytes data size, 32k bytes memory usage
• simple: 11.3x to 42.4x higher throughput

Compared against 5 state-of-the-art bounded queues

17

simple

complex

• complex: at least 2x higher than FollyQ

DPDK Test Suite (DTS) — Multiprocess benchmark

18

Te
st

er
TR

ex
 10GB

link

10GB
link

Traffic
Generator Device Under Test (DUT)

• Device Under Test
• One server process

receiving and distributing packets
• Two client processes

performing level-2 packet forwarding

• Tester and traffic generator run on
another machine

• BBQ yields 1.5x throughput of DPDK

Macro-benchmark Results — Disruptor

• Compared on three official Disruptor benchmarks
 Against Java queue, BBQ in Java, and BBQ in C via JNI

• LMAX Disruptor: bounded queue for high-performance trading

• With 32 producers, BBQ yields 3 Mop/s and Disruptor 0.6 Mop/s

19

Wrap up

20

Large spectrum of scenarios
• Single/Multi Consumer/Producer
• Retry-new and Drop-old modes
• Etc

BBQ is a novel ring buffer design
• Reduces enq-deq interference
• Supports out-of-order operations
• Model checked for WMMs

Greatly outperforms several
industrial ring buffers

Please look up the paper
for many more results

Thank you! Questions?
(BTW, we are hiring in Dresden and Munich…)

