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Bounded queues (aka ring bufters) are everywhere...
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Why are they important to us?

Crucial for the
performance and correctness
of systems and applications!
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Next, 3 ring buffer stories
from Huawei software development



Story 1: Tracing overhead and operation interterence

In production!
Must work normally

_ Application
8 Thread }

In-house OS with a new tracing tool

® Ring buffer used to collect traces fppleator

performance
Report trace

Information

® Used to generate application profile

Collect traces and
Generate log

® Reporting must be fast!

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h", O_RDONLYIO_CLOEXEC) = 3
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 48

fstat(3, {st_mode=S_IFREGI0644, st_size=1036, ...}) = 0

pread64(3, "/* Define intN_t types.\n Copyr"..., 1036, 0) = 1036

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0

close(3) =0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0O

openat(AT_FDCWD, "/usr/local/include/genmc/bits/stdint-uintn.h", O_RDONLYIO_CLOEXEC) = -1 ENOENT
openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h", O_RDONLYIO_CLOEXEC) = 3
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 49

fstat(3, {st_mode=S_IFREGI0644, st_size=1048, ...}) = 0

pread64(3, "/* Define uintN_t types.\n Copy"..., 1048, 0) = 1048 Tra ce Ou-tp Ut

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) =0

close(3) =0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
brk(0x55¢3618b9000) = 0x55¢c3618b9000
brk(0x55¢3618da000) = 0x55¢c3618da000
futex(Ox7f185315087c, FUTEX_WAKE_PRIVATE, 2147483647) = 0O
futex(Ox7f185314b458, FUTEX_WAKE_PRIVATE, 2147483647) = 0
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Story 1: Tracing overhead and operation interterence

In production!
Must work normally

_ Application
8 Thread }

In-house OS with a new tracing tool

Application

® Ring buffer used to collect traces

performance
Report trace

Information

® Used to generate application profile

Collect traces and
Generate log

® Reporting must be fast!

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h", O_RDONLYIO_CLOEXEC) = 3
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rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0O

openat(AT_FDCWD, "/usr/local/include/genmc/bits/stdint-uintn.h", O_RDONLYIO_CLOEXEC) = -1 ENOENT
openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h", O_RDONLYIO_CLOEXEC) = 3

® Consumer slowdowns producer! e )

pread64(3, "/* Define uintN_t types.\n Copy"..., 1048, 0) = 1048 Tra ce Ou-tp Ut

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) =0

close(3) =0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
brk(0x55¢3618b9000) = 0x55¢c3618b9000
brk(0x55¢3618da000) = 0x55¢c3618da000
futex(Ox7f185315087c, FUTEX_WAKE_PRIVATE, 2147483647) = 0O
futex(Ox7f185314b458, FUTEX_WAKE_PRIVATE, 2147483647) = 0
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Interference sources

Ring bufters are arrays with indices

Tail
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Interference sources
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Interterence sources — Existing work

Eng-Deq interference

Tail Head
Examples:
DPDK ring buffer read update
Linux ring bufter 1
Meta FollyQ 'deq eﬂC]'

SCQ - -

Mostly neglected
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Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

® |n-order operation limits performance I I \
Produced

} Head implementation
Allocated
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Story 2: Oversubscription and out-of-order operations
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Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices
® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

® |n-order operation limits performance

® Qut-of-order operations are challenging! Produced

® Sce paper for related work Allocated
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Story 3: Migrating from x86 to Arm

Product stable on x86 for years

® Must migrate to Arm (TaiShan servers)

® |nternally uses old DPDK ring buffer

® Application grew intertwined with ring butter
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Decision: too high risk of

upgrading DPDK ring bufter



Story 3: Migrating from x86 to Arm

Product stable on x86 for years

® Must migrate to Arm (TaiShan servers)

® |nternally uses old DPDK ring buffer

® Application grew intertwined with ring butter

Consequence:
® Annoying weak memory bug
due to a few missing fences
® More than 6 person-month to fix it

® Decision wasn't the best
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upgrading DPDK ring bufter



Story 3: Migrating from x86 to Arm

Product stable on x86 for years

® Must migrate to Arm (TaiShan servers)

® |nternally uses old DPDK ring buffer

® Application grew intertwined with ring butter

Consequence:

® Annoying weak memory bug

due to a few missing fences data

® More than 6 person-month to fix it Thread 1
data = 1;
® Decision wasn't the best C: ctrl = 1;

A
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Decision: too high risk of

upgrading DPDK ring bufter

Init
ctrl = 0;
Thread 2

while(!ctrl) {}
assert(data == 1); x
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Story 3: Migrating from x86 to Arm

Product stable on x86 for years

® Must migrate to Arm (TaiShan servers)

® |nternally uses old DPDK ring buffer

® Application grew intertwined with ring butter

Decision: too high risk of

upgrading DPDK ring bufter
Consequence:

® Annoying weak memory bug

Init
due to a few missing fences data = ctrl = O;

® More than 6 person-month to fix it Thread 1 Thread 2
Fence » data = 1;  while(!ctrl) {}
® Decision wasn't the best TS Tctrl =1, assert(data == 1); x




How do people develop for WMM?

Think hard and document

For example, printk_ringbufter

/*
* Guarantee the state 1s loaded before copying the descriptor
* content. This avoilds copylng obsolete descriptor content that might
* not apply to the descriptor state. This pairs with prb commit:B.
*
* Memory barrier involvement:
*
* If desc read:A reads from prb commit:B, then desc read:C reads
* from prb commit:A.
*
* Relies on:
*
* WMB from prb commit:A to prb commit:B
* matching
* RMB from desc read:A to desc read:C
*/
smp rmb(); /* LMM(desc read:B) */

A

HUAWEI
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How do people develop for WMM?

Think hard and document MOSt just ignore topic

For example, printk_ringbuffer d wai hat h
PIe€, Printik_ring And wait to see what happens

/*

* Guarantee the state 1is loaded before copying the descriptor

* content. This avoilids copyling obsolete descriptor content that might

* not apply to the descriptor state. This pairs with prb commit:B.

*

* Memory barrier involvement:

*

* If desc read:A reads from prb commit:B, then desc read:C reads

* from prb commit:A.

*

* Relies on:

*

* WMB from prb commit:A to prb commit:B

* matching

* RMB from desc read:A to desc read:C

*/
smp rmb(); /* LMM(desc read:B) */
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How do people develop for WMM?

Think hard and d0cument Most just ignore topic

For example, printk_ringbutter And wait to see what happens

* Guarantee the state 1s loaded before copying the descriptor
* content. This avolids copyling obsolete descCrlplobss
* not apply to the descriptor stg -

* Memory barrier involvement:

* If desc read:A reads from prb
* from prb commit:A.

* Relies on:

* WMB from prb commit:A to prb
matching

* RMB from desc read:A to desc read
*/
smp rmb(); /* LMM(desc read:B) */



Our contributions

BBQ: Block-based Bounded Queue
® Novel block-based design
® Focus on eng-deq interference

® Support for out-of-order operations

o Verified for WMMs, pragmatically

10
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Bonus features

® Single/multi producers/consumers
® Fixed- and variable-sized entries
® Retry-new and drop-old modes

® Use of efficient atomic operations

o FAA and MAX (ARMvS8.1 LSE)
e No CAS at all if MAX available




Agenda

[A Motivation

[4 Stories and Challenges
Interference, Out-of-order operations, Correctness on WMMs

[]BBQ - Block-based Bounded Queue

[] Insights to Tackle the Challenges

[] Selected Evaluation Results

11




BBQ — Block-based Bounded Queue

® Ring buffer split into blocks

® Block Head points to
current producer block

® Block Tail points to
current consumer block

® |n each block: Entry Heac
and Entry Tall

12

ail

Head
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Dealing with interferences

Eng-Deq interference

No interference when producer
and consumer in different blocks

— Head

R

update

—
Block? :enqueue:
Head
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when moving to next block

13



Dealing with interferences

Eng-Deq interference

No interference when producer
and consumer in different blocks

1 Head

R
i ] '  update
- I_ L __
| | I
Block Block ehgueue

Tail Head

Block head and tail only read
when moving to next block

13
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Eng-Eng interterence

Efficient use of FAA no side effects:
neither rollback nor blocking

update

I
,enqueueﬁ“““wmxg

Entry >
JMWMMM“”% Head |
AR U U — ) ‘

| I
'enqueue,




Dealing with interferences

Eng-Deq interference

No interference when producer
and consumer in different blocks

1 Head

R

update

-/
I
?Block Block? ,_e_n_q_u_el_J? :
Tail Head

Block head and tail only read
when moving to next block

13

Eng-Eng interterence

neither rollback nor blocking

Efficient use of FAA no side effects:

—— . _ update

|
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Dealing with interferences

Eng-Deq interference

No interference when producer
and consumer in different blocks

1 Head

R

update

— /.
I
?Block Block? ,_e_n_q_u_el_J? :
Tail Head

Block head and tail only read
when moving to next block

13

Eng-Eng interterence

neither rollback nor blocking

Efficient use of FAA no side effects:

—— . _ update

I
,enqueueﬁmwmwmxg

““““ Entry

? Head
o /"ﬁea

| I
'enqueue,

Head

Head can move out-of-bounds, no
consequence to following block.
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Dealing with interferences g

Eng-Deq interference Eng-Eng interterence

Efficient use of FAA no side effects:

No interterence when producer neither rollback nor blocking

and consumer in different blocks

: el _ update
e Entry :enqueueﬁmmmmmxg
| | €— Gead | 7T Entry
— - wawwwwwé Head
~ - - - - 7
ate enqueue
 I— R :enqueue:
?Bk)ck BlOCk? ,_e_n_q_u_et_J? : _______

Tail Head

Head can move out-of-bounds, no
consequence to following block.

Block head and tail only read
when moving to next block OK =l
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Dealing with interferences g

Eng-Deq interference Eng-Eng interterence

Efficient use of FAA no side effects:

No interterence when producer neither rollback nor blocking

and consumer in different blocks
: e _ _ update
L Entry ‘enqueue, T
| | Head | > Elntré/
\ - —
update I_GPC_ZIL_JG_U_GJ
?Bk)ck BlOCk? ,_e_n_q_u_et_J? : _______ ?BlOCk
i Head
Tail Head can move out-of-bounds, no Head
T T g consequence to following block.
ock head and tail only rea
when moving to next block OK s
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Dealing with out-of-order operations
—

—""Y Produced/Allocated

BIock? ?Block
Tail Head
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Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

Entry
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B . M f
n
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] h
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Entry ‘1
Blockf ?Block
Tail Head

Head 2/3
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Dealing with out-of-order operations

Enqueue calls:
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block has ongoing enqueues
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Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues
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2/2 Entry
Head
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Dealing with out-of-order operations

Enqueue calls:
e do not wait for others in same block to

ety complete
o ® can move to next block even if current
: block has ongoing enqueues
B g 2/2 Enty
N Dequeue calls:
374 e ? ¢ return BUSY if an enqueue is ongoing
ea oc Block .
E Head in same block

e succeed when block full or when
Produced = Allocated
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Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current
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Dealing with out-of-order operations

Enqueue calls:

e do not wait for others in same block to
complete
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Head
Dequeue calls:
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Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

Entry

|
)i . '
\ h

i

Tail I : - 79 Elntré/
] Dequeue calls:
Blogk? fsm ® return BUSY if an enqueue is ongoing
o Head in same block

e succeed when block full or when
Produced = Allocated
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Dealing with out-of-order operations

Many cool tricks in the paper:

® update block and entry indices at
the same time without D-CAS

® Avoid ABA issues with versioning

® Cache block indices for speed

14

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

Dequeue calls:
¢ return BUSY if an enqueue is ongoing

in same block
e succeed when block full or when
Produced = Allocated

A

HUAWEI



A

HUAWEI

orrectness on WMMs with practical verification

DPDK-like algorithm  _10 stomics Part of BBQ More than 20 atomics

R — I — I — I — e ————————— e ——— e —

rl e e e S

enqueue (data) { 14 dequeue () { 1 <Head, Block> BBQ<T>::get_phead_and_block () { 45 <Head, Block> BBQ<T>::get_chead_and_block () {
H 2 again: 15 again: ph = LOAD (phead) ; 46 ch = LOAD(chead);
3  ph = LOAD(P.head); 16 ch = LOAD(C.head); return (ph, blocks([ph.idx]); 47 return (ch, blocks[ch.idx]); H
pn = ph + 1; 17 cn =ch + 1; ! 18}
if (pn > LOAD(C.tail) + SZ) 18 if (cn > LOAD(P.tail)) s state BBQ<T>::allocate_entry (Block blk) { 49 state BBQ<T>::reserve_entry (Block blk) {
H £ return FULL; 19 return EMPTY; : if (LOAD (blk.allocated) .off >= BLOCK_SIZE) 50 again:
7 if (!CAS(P.head, ph, pn)) 20 if (!CAS(C.head, ch, cn)) 7 return BLOCK_DONE; 51 reserved = LOAD (blk.reserved); l
! g goto again; 21 goto again; old = FAA(blk.allocated, 1).off; 52 if (reserved.off < BLOCK_SIZE) {
9 entry[pn % SZ] = data; 22 data = entry[cn % SZ]; H 9 if (old >= BLOCK_SIZE) 53 committed = LOAD (blk.committed); “
10 while(LOAD(P.tail) != ph); 23 while(LOAD(C.tail) != ch); 10 return BLOCK_DONE; 54 if (reserved.off == committed.off)
11 3TORE (P.tail, pn); 24 TORE (C.tail, cn); H 11 return ALLOCATED (EntryDesc{.block=blk, .offset=0ld}); 55 return NO_ENTRY;
ﬂ 12 return OK; 25 return data; u 12} 56 if (committed.off != BLOCK_SIZE) { H
13 } 26 } 13 void BBQ<T>::commit_entry (EntryDesc e, T data) { 57 allocated = LOAD (blk.allocated);
I _J 14 e.block.entries[e.offset] = data; 58 if (allocated.off != committed.off)
— e — ———————— ADLC (e.block.committed, 1),' 59 return NOT_AVAILABLE; l
16 } 60 }
17 state BBQ<T>::advance_phead (Head ph) ({ 61 if (MAX (blk.reserved, reserved + 1) == reserved)
- nblk = blocks[(ph.idx + 1) % BLOCK_NUM]; 62 return RESERVED ( (EntryDesc) {.block=blk, q
¥ cons = LOAD (nblk.consumed) ; 63 _ .offset=re‘served.off, .version=reserved.vsn});
20 1if (cons.vsn < ph.vsn || eI (O CULE
21 (cons.vsn == ph.vsn && cons.off != BLOCK_SIZE)) { 2 ) .
. reserved = LORD (nblk.reserved); _ return BLOCK_DONE (reserved.vsn); l
23 if (reserved.off == cons.off) return NO_ENTRY; l BBO<TS ; :consume. entry (EntryDesc
. . 24 else return NOT_AVAILABLE; s o — ,y(iz“‘l‘-'“:"”“" e){ “
B BQ IS not easy to d Ig eSt - ) 69 data = e.block.entries[e.offset];
26 cmtd = LOAD (nblk.committed); LR R e eI PRI
27 if (cmtd.vsn == ph.vsn && cmtd.off != BLOCK_SIZE) 71 allocated = LOAD (e.block.allocated);
28 return NOT AVAILABLE; 72 if (allocated.vsn != e.version) return NULL;
29 MAX(nblk.committed, Cursor{.vsn=ph.vsn + 1}); 73 return data; q
30 MAX (nblk.allocated, Cursor{.vsn=ph.vsn + 1}); 74}
31 MAX (phead, ph + 1); 75 bool BBQ<T>::advance_chead (Head ch, Version wvsn) {
32 return SUCCESS; 76 nblk = blocks[(ch.idx + 1) % BLOCK_NUM];
33} 77 committed = LOAD (nblk.committed); l
. lBBQ<>{ 78 if (committed.vsn != ch.vsn + 1)
hared<Head> phead, chead; return false; “
o) Block<T>[] blocks; g0  MAX(nblk.consumed, Cursor{.vsn=ch.vsn + 1});
8 class Block<T> | 81 MAX (nblk.reserved, Cursor{.vsn=ch.vsn + 1}); H
shared<Cursor> allocated, committed; 2 if (committed.vsn < vsn + (ch.idx == 0))
10 hared<Cursor> reserved, consumed; 83 return false;
. T[] entries; 8 MAX (nblk.reserved, Cursor{.vsn=committed.vsn});
12 } 85 MAX (chead, ch + 1); l
43 class EntryDesc { 86 return true;
! Block block; Offset offset; Version version; } 87 } H
-

| retry-new mode | drop-old mode
e E———— e E————
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Correctness on WMMs with practical verification

® | ong stress testing ® Model check corner cases on WMM
by engineers by engineers

® |dentification of corner cases ® 3 bugs found model checking them
by WMM experts and engineers Not found while stress testing

® Only a few corner cases necessary ® Reproducible on real hardware

queue full/empty, FIFO, wrap-around Test cases were built in retrospect



Agenda

[A Motivation

[4 Stories and Challenges
Interference, Out-of-order operations, Correctness on WMMs

[ Block-based Bounded Queue (BBQ)

[ Insights to Tackle the Challenges

[] Selected Evaluation Results
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Micro-benchmark Results — SPSC

Compared against 5 state-of-the-art bounded queues

® x86 machines with 88 hyper-threads
® 38 bytes data size, 32k bytes memory usage
® simple: 11.3xto 42.4x higher throughput
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Micro-benchmark Results — SPSC

Compared against 5 state-of-the-art bounded queues

® x86 machines with 88 hyper-threads

® 38 bytes data size, 32k bytes memory usage

® simple: 11.3xto 42.4x higher throughput

® complex: at least 2x higher than FollyQ
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DPDK Test Suite (DTS) — Multiprocess benchmark

® Device Under Test Traffic
Generator Device Under Test (DUT)
® One server process 10GB
receiving and distributing packets O Xfe—dnk
. O | o
® Two client processes Ol =l —
performing level-2 packet forwarding link
9
. O -
® Tester and traffic generator run on S 4-
: 5
another machine 2, obQ
%’ - dpdkrb
. = 0
e BBQ yields 1.5x throughput of DPDK R 128 256 512 1024 2048 4096 8192

18
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Macro-benchmark Results — Disruptor

o | MAX Disruptor: bounded queue for high-pertormance trading

® Compared on three official Disruptor benchmarks
Against Java queue, BBQ in Java, and BBQ in C via JNI

e \With 32 producers, BBQ yields 3 Mop/s and Disruptor 0.6 Mop/s

Throughput (batch/s)

O
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-
o
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O
9y
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le7/

I BN BBQ

g thoid.de B
I 1 1 1=11
il g i

Queue
| Disruptor

BBQ-JNI

1P1C 2P1C 4P1C 8P1C 16P1C 32P1C 1P2C 1P4C 1P8C 1P16C 1P32C
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Wrap up

= -5 -; BBQ is a novel ring buffer design
" 11 ® Reduces eng-deq interference

o o Supports out-of-order operations
® Model checked tfor WMMs

: Greatly outperforms several
Large spectrum of scenarios R
® Single/Multi Consumer/Producer NEUSTHat g bUTers
=

® Retry-new and Drop-old modes
® Ftc Please look up the paper

for many more results
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Thank you! Questions?

(BTW, we are hiring in Dresden and Munich...)
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