COMPUTING SYSTEMS

> ARTIFACT ARTIFACT
U S e n I X EVALUATED EVALUATED
i
ASSOCIATION m REPRODUCED

cuUsSenix cuUsSenix
’ THE ADVANCED é’uASSOCI,IM?I(ON é’ AAAAAAAAAAA

BBQ: A Block-based Bounded Queue
for Exchanging Data and Profiling

Jiawei Wang, Diogo Behrens, Ming Fu, Lilith Oberhauser,
Jonas Oberhauser, Jitang Lei, Geng Chen, Hermann Hartig, Haibo Chen

W e

DRESDEN
HUAWEI

Bounded queues (aka ring bufters) are everywhere...

openGauss

PostgreSQL

@ DATA PLANE DEVELOPMENT KIT

Why are they important to us?

Crucial for the
performance and correctness
of systems and applications!

Why are they important to us?

Crucial for the
performance and correctness
of systems and applications!

Next, 3 ring buffer stories
from Huawei software development

Story 1: Tracing overhead and operation interterence

In production!
Must work normally

_ Application
8 Thread }

In-house OS with a new tracing tool

® Ring buffer used to collect traces fppleator

performance
Report trace

Information

® Used to generate application profile

Collect traces and
Generate log

® Reporting must be fast!

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h", O_RDONLYIO_CLOEXEC) = 3
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 48

fstat(3, {st_mode=S_IFREGI0644, st_size=1036, ...}) = 0

pread64(3, "/* Define intN_t types.\n Copyr"..., 1036, 0) = 1036

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0

close(3) =0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0O

openat(AT_FDCWD, "/usr/local/include/genmc/bits/stdint-uintn.h", O_RDONLYIO_CLOEXEC) = -1 ENOENT
openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h", O_RDONLYIO_CLOEXEC) = 3
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 49

fstat(3, {st_mode=S_IFREGI0644, st_size=1048, ...}) = 0

pread64(3, "/* Define uintN_t types.\n Copy"..., 1048, 0) = 1048 Tra ce Ou-tp Ut

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) =0

close(3) =0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
brk(0x55¢3618b9000) = 0x55¢c3618b9000
brk(0x55¢3618da000) = 0x55¢c3618da000
futex(Ox7f185315087c, FUTEX_WAKE_PRIVATE, 2147483647) = 0O
futex(Ox7f185314b458, FUTEX_WAKE_PRIVATE, 2147483647) = 0

A

HUAWEI

Story 1: Tracing overhead and operation interterence

In production!
Must work normally

_ Application
8 Thread }

In-house OS with a new tracing tool

Application

® Ring buffer used to collect traces

performance
Report trace

Information

® Used to generate application profile

Collect traces and
Generate log

® Reporting must be fast!

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h", O_RDONLYIO_CLOEXEC) = 3
readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 48
fstat(3, {st_mode=S_IFREGI0644, st_size=1036, ...}) = 0
m pread64(3, "/* Define intN_t types.\n Copyr"..., 1036, 0) = 1036
rO e rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0
close(3) =0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0O

openat(AT_FDCWD, "/usr/local/include/genmc/bits/stdint-uintn.h", O_RDONLYIO_CLOEXEC) = -1 ENOENT
openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h", O_RDONLYIO_CLOEXEC) = 3

® Consumer slowdowns producer! e)

pread64(3, "/* Define uintN_t types.\n Copy"..., 1048, 0) = 1048 Tra ce Ou-tp Ut

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) =0

close(3) =0
rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0
brk(0x55¢3618b9000) = 0x55¢c3618b9000
brk(0x55¢3618da000) = 0x55¢c3618da000
futex(Ox7f185315087c, FUTEX_WAKE_PRIVATE, 2147483647) = 0O
futex(Ox7f185314b458, FUTEX_WAKE_PRIVATE, 2147483647) = 0

A

HUAWEI

Interference sources

Ring bufters are arrays with indices

Tail

A

HUAWEI

Interference sources

Ring bufters are arrays with indices

Tail

n

4
!

1
;;

& -
f

)
i

}
)
!
|
!

u‘
"
i
i
h

Head

A

HUAWEI

il il
b 11)
Al i
l A
1l
\““

A

HUAWEI

Interference sources

Ring bufters are arrays with indices

] ‘
Head
A IX N
Increment
Index

A

HUAWEI

Interference sources

Ring bufters are arrays with indices

| ¥ } ¥
Tail Head
AR R
/ \ \ Increment
Index
Eng-Enqg
interference
/ (contention)
o ____ L Y N W

A

HUAWEI

Interference sources

Ring bufters are arrays with indices

i\
il | |
I o i
ol o it i
‘." i ’ i ' H !
il 1l 1l

Read index l
. Is queue empty? S
Tail Hffg
/ \ \ Increment
Index
Eng-Enqg
interference
:rdequeue: /(contention)
_______ L Y A N ___

A

HUAWEI

Interference sources

Ring bufters are arrays with indices

i
il | &
Vb o i
a E it ni
1 1 A 1
il 1l il

| i
i _ g _
_(———— _ __ _ [=N N

Read index
Tai TR Heod
Eng-Deq / ’\\
interference ’”% %”;f”t
(cache misses) Eng-Enqg
y interference
dequeue, / (contention)

A

HUAWEI

Interference sources

Ring bufters are arrays with indices

i
il | &
Vb o i
a E it ni
1 1 A 1
il 1l il

| i
i _ g _
_(———— _ __ _ [=N N

Read index
. ueue TPy : >Heaa
Eng-Deq /’\\
""" interference /”% %”;f”t
(cache misses) Eng-Enqg
y interference
dequeue, / (contention)

Interterence sources — Existing work

Eng-Deq interference

Tail Head
Examples:
DPDK ring buffer read update
Linux ring bufter 1
Meta FollyQ 'deq eﬂC]'

SCQ - -

Mostly neglected

A

HUAWEI

Interterence sources — Existing work

Eng-Deq interference

Tail Head
Examples:
DPDK ring bufter read update
Linux ring bufter

1

Meta FO”yQ |deq Ienq:
SCQ T T

Mostly neglected

Eng-Eng interterence

Tail Head
7 AR
update
Example: - F\- - - -
FollyQ :enq: :enq: :enq:

A

HUAWEI

Interterence sources — Existing work

Eng-Deq interference

Tail Head
Examples:
DPDK ring buffer read update
Linux ring bufter 1
Meta FollyQ 'deq ,enq:
SCQ T -

Mostly neglected

Eng-Eng interterence

Tail Head
7 AR
update
Example: - - F\- - - -
FollyQ :enq: :enq: :enq:

FAA typically faster than CAS

A

HUAWEI

Interterence sources — Existing work

Eng-Deq interference

Tail Head
Examples:
DPDK ring buffer read update
Linux ring bufter 1
Meta FollyQ 'deq ,enq:
SCQ T -

Mostly neglected

Eng-Eng interterence

Tail Head
7 AR
update
Example: - - F\- - - -
FollyQ :enq: :enq: :enq:

FAA typically faster than CAS

A

HUAWEI

Interterence sources — Existing work

Eng-Deq interference

Tail Head
Examples:
DPDK ring bufter read update
Linux ring bufter 1
Meta FollyQ 'Cqu ,enq:
SCQ T -

Mostly neglected

A

HUAWEI

Eng-Eng interterence

Vg | Floges
i i i

Tail Head
A AR
update
Example: - - r\— - - -
I I I
FollyQ eng’ eng' | enq

FAA typically faster than CAS

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

® |n-order operation limits performance I I \
Produced

} Head implementation
Allocated

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

i il il b <
B ki ki 1l
, f‘.'

ki

i

]i |

1 ¥ I |
it k{1 k|
i ‘U &
i B N £

I -

Produced
Allocated

® |n-order operation limits performance

i
L

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation: e

R B
4 A hi
! 1 H

1 «I .
i N
it 2l |
[- | N . [| A _
I I

Produced
Allocated

® |n-order operation limits performance

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation: ———

Produced T

Allocated

® |n-order operation limits performance

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation: —

Produced T

Allocated

® |n-order operation limits performance

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

1 1
| 1 1 1 | !
i ‘,, k4 4! #! %

Allocated

® |n-order operation limits performance

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

Produced T

Allocated

® |n-order operation limits performance

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

enq enq

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

Produced T

Allocated

® |n-order operation limits performance

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

® |n-order operation limits performance

i ! j.l" | i R :

" A A fi A

1l t ¥ ¥

"‘ ! J qhu e $

& A A Al &

;) |) i (I . i . ¥ 4 i,

Allocated

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

N B \
o i 3 e s ‘
! ‘H . It
W .;]; et \
b i
;W‘; < ;’f‘;
A A
41 1 ‘
|
§

N
b ’{
‘ ‘\l‘
S 5 B
- _ _ _ i _

Produced
Allocated

® |n-order operation limits performance

|
i
!
& R
3

o

I

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices

® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

® |n-order operation limits performance

A

HUAWEI

Story 2: Oversubscription and out-of-order operations

® New framework for mobile devices
® Few cores and many threads

® Communication via ring buffers

® Problem with initial implementation:

® |n-order operation limits performance

® Qut-of-order operations are challenging! Produced

® Sce paper for related work Allocated

A

HUAWEI

Story 3: Migrating from x86 to Arm

Product stable on x86 for years

® Must migrate to Arm (TaiShan servers)

® |nternally uses old DPDK ring buffer

® Application grew intertwined with ring butter

A

HUAWEI

Story 3: Migrating from x86 to Arm

Product stable on x86 for years

® Must migrate to Arm (TaiShan servers)

® |nternally uses old DPDK ring buffer

® Application grew intertwined with ring butter

Decision: too high risk of

upgrading DPDK ring bufter

Story 3: Migrating from x86 to Arm

Product stable on x86 for years

® Must migrate to Arm (TaiShan servers)

® |nternally uses old DPDK ring buffer

® Application grew intertwined with ring butter

Consequence:
® Annoying weak memory bug
due to a few missing fences
® More than 6 person-month to fix it

® Decision wasn't the best

A

HUAWEI

Decision: too high risk of

upgrading DPDK ring bufter

Story 3: Migrating from x86 to Arm

Product stable on x86 for years

® Must migrate to Arm (TaiShan servers)

® |nternally uses old DPDK ring buffer

® Application grew intertwined with ring butter

Consequence:

® Annoying weak memory bug

due to a few missing fences data

® More than 6 person-month to fix it Thread 1
data = 1;
® Decision wasn't the best C: ctrl = 1;

A

HUAWEI

Decision: too high risk of

upgrading DPDK ring bufter

Init
ctrl = 0;
Thread 2

while(!ctrl) {}
assert(data == 1); x

A

HUAWEI

Story 3: Migrating from x86 to Arm

Product stable on x86 for years

® Must migrate to Arm (TaiShan servers)

® |nternally uses old DPDK ring buffer

® Application grew intertwined with ring butter

Decision: too high risk of

upgrading DPDK ring bufter
Consequence:

® Annoying weak memory bug

Init
due to a few missing fences data = ctrl = O;

® More than 6 person-month to fix it Thread 1 Thread 2
Fence » data = 1; while(!ctrl) {}
® Decision wasn't the best TS Tctrl =1, assert(data == 1); x

How do people develop for WMM?

Think hard and document

For example, printk_ringbufter

/*
* Guarantee the state 1s loaded before copying the descriptor
* content. This avoilds copylng obsolete descriptor content that might
* not apply to the descriptor state. This pairs with prb commit:B.
*
* Memory barrier involvement:
*
* If desc read:A reads from prb commit:B, then desc read:C reads
* from prb commit:A.
*
* Relies on:
*
* WMB from prb commit:A to prb commit:B
* matching
* RMB from desc read:A to desc read:C
*/
smp rmb(); /* LMM(desc read:B) */

A

HUAWEI

A

HUAWEI

How do people develop for WMM?

Think hard and document MOSt just ignore topic

For example, printk_ringbuffer d wai hat h
PIe€, Printik_ring And wait to see what happens

/*

* Guarantee the state 1is loaded before copying the descriptor

* content. This avoilids copyling obsolete descriptor content that might

* not apply to the descriptor state. This pairs with prb commit:B.

*

* Memory barrier involvement:

*

* If desc read:A reads from prb commit:B, then desc read:C reads

* from prb commit:A.

*

* Relies on:

*

* WMB from prb commit:A to prb commit:B

* matching

* RMB from desc read:A to desc read:C

*/
smp rmb(); /* LMM(desc read:B) */

A

HUAWEI

How do people develop for WMM?

Think hard and d0cument Most just ignore topic

For example, printk_ringbutter And wait to see what happens

* Guarantee the state 1s loaded before copying the descriptor
* content. This avolids copyling obsolete descCrlplobss
* not apply to the descriptor stg -

* Memory barrier involvement:

* If desc read:A reads from prb
* from prb commit:A.

* Relies on:

* WMB from prb commit:A to prb
matching

* RMB from desc read:A to desc read
*/
smp rmb(); /* LMM(desc read:B) */

Our contributions

BBQ: Block-based Bounded Queue
® Novel block-based design
® Focus on eng-deq interference

® Support for out-of-order operations

o Verified for WMMs, pragmatically

10

Our contributions

BBQ: Block-based Bounded Queue
® Novel block-based design
® Focus on eng-deq interference

® Support for out-of-order operations

o Verified for WMMs, pragmatically

10

Bonus features

® Single/multi producers/consumers
® Fixed- and variable-sized entries
® Retry-new and drop-old modes

® Use of efficient atomic operations

o FAA and MAX (ARMvS8.1 LSE)
e No CAS at all if MAX available

Agenda

[A Motivation

[4 Stories and Challenges
Interference, Out-of-order operations, Correctness on WMMs

[]BBQ - Block-based Bounded Queue

[] Insights to Tackle the Challenges

[] Selected Evaluation Results

11

BBQ — Block-based Bounded Queue

® Ring buffer split into blocks

® Block Head points to
current producer block

® Block Tail points to
current consumer block

® |n each block: Entry Heac
and Entry Tall

12

ail

Head

A

Dealing with interferences

Eng-Deq interference

No interference when producer
and consumer in different blocks

— Head

R

update

—
Block? :enqueue:
Head

13

A

Dealing with interferences

Eng-Deq interference

No interference when producer
and consumer in different blocks

— Head

R

update

. _ - —
Block? :enqueue:
Head

Block head and tail only read
when moving to next block

13

Dealing with interferences

Eng-Deq interference

No interference when producer
and consumer in different blocks

1 Head

R
i] ' update
- I_ L __
| | I
Block Block ehgueue

Tail Head

Block head and tail only read
when moving to next block

13

A

HUAWEI

Eng-Eng interterence

Efficient use of FAA no side effects:
neither rollback nor blocking

update

I
,enqueueﬁ“““wmxg

Entry >
JMWMMM“”% Head |
AR U U —) ‘

| I
'enqueue,

Dealing with interferences

Eng-Deq interference

No interference when producer
and consumer in different blocks

1 Head

R

update

-/
I
?Block Block? ,_e_n_q_u_el_J? :
Tail Head

Block head and tail only read
when moving to next block

13

Eng-Eng interterence

neither rollback nor blocking

Efficient use of FAA no side effects:

—— . _ update

|
‘enqueue, T

—————— Entry

? Head
S //ﬁea

| I
'enqueue,

A

HUAWEI

Dealing with interferences

Eng-Deq interference

No interference when producer
and consumer in different blocks

1 Head

R

update

— /.
I
?Block Block? ,_e_n_q_u_el_J? :
Tail Head

Block head and tail only read
when moving to next block

13

Eng-Eng interterence

neither rollback nor blocking

Efficient use of FAA no side effects:

—— . _ update

I
,enqueueﬁmwmwmxg

““““ Entry

? Head
o /"ﬁea

| I
'enqueue,

Head

Head can move out-of-bounds, no
consequence to following block.

A

HUAWEI

Dealing with interferences g

Eng-Deq interference Eng-Eng interterence

Efficient use of FAA no side effects:

No interterence when producer neither rollback nor blocking

and consumer in different blocks

: el _ update
e Entry :enqueueﬁmmmmmxg
| | €— Gead | 7T Entry
— - wawwwwwé Head
~ - - - - 7
ate enqueue
 I— R :enqueue:
?Bk)ck BlOCk? ,_e_n_q_u_et_J? : _______

Tail Head

Head can move out-of-bounds, no
consequence to following block.

Block head and tail only read
when moving to next block OK =l

13

Dealing with interferences g

Eng-Deq interference Eng-Eng interterence

Efficient use of FAA no side effects:

No interterence when producer neither rollback nor blocking

and consumer in different blocks
: e _ _ update
L Entry ‘enqueue, T
| | Head | > Elntré/
\ - —
update I_GPC_ZIL_JG_U_GJ
?Bk)ck BlOCk? ,_e_n_q_u_et_J? : _______ ?BlOCk
i Head
Tail Head can move out-of-bounds, no Head
T T g consequence to following block.
ock head and tail only rea
when moving to next block OK s

13

A

HUAWEI

Dealing with out-of-order operations
—

—""Y Produced/Allocated

BIock? ?Block
Tail Head

14

Dealing with out-of-order operations

BIock? ?Block
Tail Head

14

A

HUAWEI

Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

Entry

)
i
|

B . M f
n
J
] h
t
: i
1 |

Entry ‘1
Blockf ?Block
Tail Head

Head 2/3

14

A

HUAWEI

Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

Entry

Entry 3/4
Head Blockf ?Block
Tail Head

14

A

HUAWEI

Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

Entry

?Block
Head

Entry 3/4
Head Block
Tail

14

A

HUAWEI

Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

Entry

Tail . [

2/2 Entry
Head

! 1 '

o ‘ -
!
i

i

?Block
Head

Entry
Head 3/4

Block
Tail

14

A

HUAWEI

Dealing with out-of-order operations

Enqueue calls:
e do not wait for others in same block to

ety complete
o ® can move to next block even if current
: block has ongoing enqueues
B g 2/2 Enty
N Dequeue calls:
374 e ? ¢ return BUSY if an enqueue is ongoing
ea oc Block .
E Head in same block

e succeed when block full or when
Produced = Allocated

14

A

HUAWEI

Dealing with out-of-order operations

Enqueue calls:
e do not wait for others in same block to

ey complete
> ® can move to next block even if current
: block has ongoing enqueues
B g 2/2 Enty
N Dequeue calls:
ey 474 e ? ¢ return BUSY if an enqueue is ongoing
ea oc Block .
g Head in same block

e succeed when block full or when
Produced = Allocated

14

A

HUAWEI

Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

7 2/2 Entry
Head

! 1 '
¢ f

!

i
1 d

ey Dequeue calls:
fty arm o ¢ return BUSY if an enqueue is ongoing
Head 4/4 fBIock
Head in same block

e succeed when block full or when
Produced = Allocated

14

A

HUAWEI

Dealing with out-of-order operations

Enqueue calls:

e do not wait for others in same block to
complete

ET”atﬁy.] ® can move to next block even it current
block has ongoing enqueues
Head
Dequeue calls:
? ¢ return BUSY if an enqueue is ongoing
B_ll_o,(ik | fBIock]
: Head in same block

e succeed when block full or when
Produced = Allocated

14

A

HUAWEI

Dealing with out-of-order operations

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

Entry

|
)i . '
\ h

i

Tail I : - 79 Elntré/
] Dequeue calls:
Blogk? fsm ® return BUSY if an enqueue is ongoing
o Head in same block

e succeed when block full or when
Produced = Allocated

14

Dealing with out-of-order operations

Many cool tricks in the paper:

® update block and entry indices at
the same time without D-CAS

® Avoid ABA issues with versioning

® Cache block indices for speed

14

Enqueue calls:

® do not wait for others in same block to
complete

® can move to next block even it current

block has ongoing enqueues

Dequeue calls:
¢ return BUSY if an enqueue is ongoing

in same block
e succeed when block full or when
Produced = Allocated

A

HUAWEI

A

HUAWEI

orrectness on WMMs with practical verification

DPDK-like algorithm _10 stomics Part of BBQ More than 20 atomics

R — I — I — I — e ————————— e ——— e —

rl e e e S

enqueue (data) { 14 dequeue () { 1 <Head, Block> BBQ<T>::get_phead_and_block () { 45 <Head, Block> BBQ<T>::get_chead_and_block () {
H 2 again: 15 again: ph = LOAD (phead) ; 46 ch = LOAD(chead);
3 ph = LOAD(P.head); 16 ch = LOAD(C.head); return (ph, blocks([ph.idx]); 47 return (ch, blocks[ch.idx]); H
pn = ph + 1; 17 cn =ch + 1; ! 18}
if (pn > LOAD(C.tail) + SZ) 18 if (cn > LOAD(P.tail)) s state BBQ<T>::allocate_entry (Block blk) { 49 state BBQ<T>::reserve_entry (Block blk) {
H £ return FULL; 19 return EMPTY; : if (LOAD (blk.allocated) .off >= BLOCK_SIZE) 50 again:
7 if (!CAS(P.head, ph, pn)) 20 if (!CAS(C.head, ch, cn)) 7 return BLOCK_DONE; 51 reserved = LOAD (blk.reserved); l
! g goto again; 21 goto again; old = FAA(blk.allocated, 1).off; 52 if (reserved.off < BLOCK_SIZE) {
9 entry[pn % SZ] = data; 22 data = entry[cn % SZ]; H 9 if (old >= BLOCK_SIZE) 53 committed = LOAD (blk.committed); “
10 while(LOAD(P.tail) != ph); 23 while(LOAD(C.tail) != ch); 10 return BLOCK_DONE; 54 if (reserved.off == committed.off)
11 3TORE (P.tail, pn); 24 TORE (C.tail, cn); H 11 return ALLOCATED (EntryDesc{.block=blk, .offset=0ld}); 55 return NO_ENTRY;
ﬂ 12 return OK; 25 return data; u 12} 56 if (committed.off != BLOCK_SIZE) { H
13 } 26 } 13 void BBQ<T>::commit_entry (EntryDesc e, T data) { 57 allocated = LOAD (blk.allocated);
I _J 14 e.block.entries[e.offset] = data; 58 if (allocated.off != committed.off)
— e — ———————— ADLC (e.block.committed, 1),' 59 return NOT_AVAILABLE; l
16 } 60 }
17 state BBQ<T>::advance_phead (Head ph) ({ 61 if (MAX (blk.reserved, reserved + 1) == reserved)
- nblk = blocks[(ph.idx + 1) % BLOCK_NUM]; 62 return RESERVED ((EntryDesc) {.block=blk, q
¥ cons = LOAD (nblk.consumed) ; 63 _ .offset=re‘served.off, .version=reserved.vsn});
20 1if (cons.vsn < ph.vsn || eI (O CULE
21 (cons.vsn == ph.vsn && cons.off != BLOCK_SIZE)) { 2) .
. reserved = LORD (nblk.reserved); _ return BLOCK_DONE (reserved.vsn); l
23 if (reserved.off == cons.off) return NO_ENTRY; l BBO<TS ; :consume. entry (EntryDesc
. . 24 else return NOT_AVAILABLE; s o — ,y(iz“‘l‘-'“:"”“" e){ “
B BQ IS not easy to d Ig eSt -) 69 data = e.block.entries[e.offset];
26 cmtd = LOAD (nblk.committed); LR R e eI PRI
27 if (cmtd.vsn == ph.vsn && cmtd.off != BLOCK_SIZE) 71 allocated = LOAD (e.block.allocated);
28 return NOT AVAILABLE; 72 if (allocated.vsn != e.version) return NULL;
29 MAX(nblk.committed, Cursor{.vsn=ph.vsn + 1}); 73 return data; q
30 MAX (nblk.allocated, Cursor{.vsn=ph.vsn + 1}); 74}
31 MAX (phead, ph + 1); 75 bool BBQ<T>::advance_chead (Head ch, Version wvsn) {
32 return SUCCESS; 76 nblk = blocks[(ch.idx + 1) % BLOCK_NUM];
33} 77 committed = LOAD (nblk.committed); l
. lBBQ<>{ 78 if (committed.vsn != ch.vsn + 1)
hared<Head> phead, chead; return false; “
o) Block<T>[] blocks; g0 MAX(nblk.consumed, Cursor{.vsn=ch.vsn + 1});
8 class Block<T> | 81 MAX (nblk.reserved, Cursor{.vsn=ch.vsn + 1}); H
shared<Cursor> allocated, committed; 2 if (committed.vsn < vsn + (ch.idx == 0))
10 hared<Cursor> reserved, consumed; 83 return false;
. T[] entries; 8 MAX (nblk.reserved, Cursor{.vsn=committed.vsn});
12 } 85 MAX (chead, ch + 1); l
43 class EntryDesc { 86 return true;
! Block block; Offset offset; Version version; } 87 } H
-

| retry-new mode | drop-old mode
e E———— e E————

A

HUAWEI

Correctness on WMMs with practical verification

® | ong stress testing ® Model check corner cases on WMM
by engineers by engineers

® |dentification of corner cases ® 3 bugs found model checking them
by WMM experts and engineers Not found while stress testing

® Only a few corner cases necessary ® Reproducible on real hardware

queue full/empty, FIFO, wrap-around Test cases were built in retrospect

Agenda

[A Motivation

[4 Stories and Challenges
Interference, Out-of-order operations, Correctness on WMMs

[Block-based Bounded Queue (BBQ)

[Insights to Tackle the Challenges

[] Selected Evaluation Results

16

Micro-benchmark Results — SPSC

Compared against 5 state-of-the-art bounded queues

® x86 machines with 88 hyper-threads
® 38 bytes data size, 32k bytes memory usage
® simple: 11.3xto 42.4x higher throughput

w 1le8
o) . o
o simple 2101 -
51 ;
3
o Ia
L O 0
2 ©10" -
80 —
C 0 10 | A0 S -
— SEVANIRVAS G S RN\ Y\ QSR S LS ST« WP«
0P e 00 (o e) P oM 00 o e

A

HUAWEI

A

HUAWEI

Micro-benchmark Results — SPSC

Compared against 5 state-of-the-art bounded queues

® x86 machines with 88 hyper-threads

® 38 bytes data size, 32k bytes memory usage

® simple: 11.3xto 42.4x higher throughput

® complex: at least 2x higher than FollyQ

v 1e8

Q. :

o simple

21

Q.

L

O)

-

=0

L

— & AP KO X0 O L0
0 0 e 5097 W e

17

-
-

-
-

L1 cache miss

-
(D
~

op/s)

complex

-

t(

ghpu

Throu
o

(-
]

-

A

HUAWEI

DPDK Test Suite (DTS) — Multiprocess benchmark

® Device Under Test Traffic
Generator Device Under Test (DUT)
® One server process 10GB
receiving and distributing packets O Xfe—dnk
. O | o
® Two client processes Ol =l —
performing level-2 packet forwarding link
9
. O -
® Tester and traffic generator run on S 4-
: 5
another machine 2, obQ
%’ - dpdkrb
. = 0
e BBQ yields 1.5x throughput of DPDK R 128 256 512 1024 2048 4096 8192

18

Buffer size

Macro-benchmark Results — Disruptor

o | MAX Disruptor: bounded queue for high-pertormance trading

® Compared on three official Disruptor benchmarks
Against Java queue, BBQ in Java, and BBQ in C via JNI

e \With 32 producers, BBQ yields 3 Mop/s and Disruptor 0.6 Mop/s

Throughput (batch/s)

O
o

-
9y
I

-
o
1

O
9y
I

le7/

I BN BBQ

g thoid.de B
I 1 1 1=11
il g i

Queue
| Disruptor

BBQ-JNI

1P1C 2P1C 4P1C 8P1C 16P1C 32P1C 1P2C 1P4C 1P8C 1P16C 1P32C

19

A

HUAWEI

Wrap up

= -5 -; BBQ is a novel ring buffer design
" 11 ® Reduces eng-deq interference

o o Supports out-of-order operations
® Model checked tfor WMMs

: Greatly outperforms several
Large spectrum of scenarios R
® Single/Multi Consumer/Producer NEUSTHat g bUTers
=

® Retry-new and Drop-old modes
® Ftc Please look up the paper

for many more results

20

Thank you! Questions?

(BTW, we are hiring in Dresden and Munich...)

NS

HUAWEI

TECHNISCHE
UNIVERSITAT
DRESDEN

