
BBQ: A Block-based Bounded Queue 

for Exchanging Data and Profiling
Jiawei Wang,  Diogo Behrens,  Ming Fu,  Lilith Oberhauser, 


Jonas Oberhauser,  Jitang Lei,  Geng Chen,  Hermann Härtig,  Haibo Chen 



Bounded queues (aka ring buffers) are everywhere…

2



Crucial for the 
performance and correctness 
of systems and applications!

Why are they important to us?



Crucial for the 
performance and correctness 
of systems and applications!

Why are they important to us?

Next, 3 ring buffer stories 
from Huawei software development



Story 1: Tracing overhead and operation interference

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h", O_RDONLY|O_CLOEXEC) = 3

readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 48

fstat(3, {st_mode=S_IFREG|0644, st_size=1036, ...}) = 0

pread64(3, "/* Define intN_t types.\n   Copyr"..., 1036, 0) = 1036

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0

close(3)                                = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

openat(AT_FDCWD, "/usr/local/include/genmc/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = -1 ENOENT

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = 3

readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 49

fstat(3, {st_mode=S_IFREG|0644, st_size=1048, ...}) = 0

pread64(3, "/* Define uintN_t types.\n   Copy"..., 1048, 0) = 1048

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0

close(3)                                = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

brk(0x55c3618b9000)                     = 0x55c3618b9000

brk(0x55c3618da000)                     = 0x55c3618da000

futex(0x7f185315087c, FUTEX_WAKE_PRIVATE, 2147483647) = 0

futex(0x7f185314b458, FUTEX_WAKE_PRIVATE, 2147483647) = 0

Ring buffer
Collect traces and


Generate log

Application

performance

Report trace

Information

Trace output

Application

Thread

In-house OS with a new tracing tool

• Ring buffer used to collect traces


• Used to generate application profile


• Reporting must be fast!

In production!

Must work normally

4



Story 1: Tracing overhead and operation interference

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-intn.h", O_RDONLY|O_CLOEXEC) = 3

readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 48

fstat(3, {st_mode=S_IFREG|0644, st_size=1036, ...}) = 0

pread64(3, "/* Define intN_t types.\n   Copyr"..., 1036, 0) = 1036

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0

close(3)                                = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

openat(AT_FDCWD, "/usr/local/include/genmc/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = -1 ENOENT

openat(AT_FDCWD, "/usr/include/x86_64-linux-gnu/bits/stdint-uintn.h", O_RDONLY|O_CLOEXEC) = 3

readlink("/proc/self/fd/3", "/usr/include/x86_64-linux-gnu/bi"..., 4096) = 49

fstat(3, {st_mode=S_IFREG|0644, st_size=1048, ...}) = 0

pread64(3, "/* Define uintN_t types.\n   Copy"..., 1048, 0) = 1048

rt_sigprocmask(SIG_SETMASK, ~[RTMIN RT_1], [], 8) = 0

close(3)                                = 0

rt_sigprocmask(SIG_SETMASK, [], NULL, 8) = 0

brk(0x55c3618b9000)                     = 0x55c3618b9000

brk(0x55c3618da000)                     = 0x55c3618da000

futex(0x7f185315087c, FUTEX_WAKE_PRIVATE, 2147483647) = 0

futex(0x7f185314b458, FUTEX_WAKE_PRIVATE, 2147483647) = 0

Ring buffer
Collect traces and


Generate log

Application

performance

Report trace

Information

Trace output

Application

Thread

In-house OS with a new tracing tool

• Ring buffer used to collect traces


• Used to generate application profile


• Reporting must be fast!

In production!

Must work normally

4

Problem

• Consumer slowdowns producer!



Interference sources


Head

5

Tail

Ring buffers are arrays with indices



Interference sources


Head

enqueue enqueue enqueue

5

Tail

Ring buffers are arrays with indices



Interference sources


Head

enqueue

Increment

Index

enqueue enqueue

5

Tail

Ring buffers are arrays with indices



Interference sources


Head

enqueue

Increment

Index

enqueue enqueue

 Enq-Enq

interference

(contention) 

5

Tail

Ring buffers are arrays with indices



Interference sources


Head

enqueue

Increment

Index

dequeue

Read index

Is queue empty?

enqueue enqueue

 Enq-Enq

interference

(contention) 

5

Tail

Ring buffers are arrays with indices



Interference sources


Head

enqueue

Increment

Index

dequeue

Read index

Is queue empty?

 Enq-Deq 
interference


(cache misses) 

enqueue enqueue

 Enq-Enq

interference

(contention) 

5

Tail

Ring buffers are arrays with indices



Interference sources


Head

enqueue

Increment

Index

dequeue

Read index

Is queue empty?

 Enq-Deq 
interference


(cache misses) 
.....

enqueue enqueue

 Enq-Enq

interference

(contention) 

5

Tail

Ring buffers are arrays with indices



Interference sources — Existing work


enq

update

deq

read
Examples:

DPDK ring buffer 

Linux ring buffer

Meta FollyQ

SCQ

Mostly neglected

6

Enq-Deq interference

HeadTail



Interference sources — Existing work


enq

update

deq

read

enq enq enq …

…
updateExamples:


DPDK ring buffer 

Linux ring buffer

Meta FollyQ

SCQ

Example:

FollyQ

Mostly neglected

6

Enq-Deq interference Enq-Enq interference

HeadTail HeadTail



Interference sources — Existing work


enq

update

deq

read

enq enq enq …

…
update

FAA

Examples:

DPDK ring buffer 

Linux ring buffer

Meta FollyQ

SCQ

Example:

FollyQ

Mostly neglected FAA typically faster than CAS

6

Enq-Deq interference Enq-Enq interference

HeadTail HeadTail



Interference sources — Existing work


enq

update

deq

read

enq enq enq …

…
update

FAA

Examples:

DPDK ring buffer 

Linux ring buffer

Meta FollyQ

SCQ

Example:

FollyQ

Mostly neglected FAA typically faster than CAS

6

Enq-Deq interference Enq-Enq interference

HeadTail HeadTail



Interference sources — Existing work


enq

update

deq

read

enq enq enq …

…
update

FAA

Examples:

DPDK ring buffer 

Linux ring buffer

Meta FollyQ

SCQ

Example:

FollyQ

Mostly neglected FAA typically faster than CAS

6

Enq-Deq interference Enq-Enq interference

HeadTail HeadTail



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

Allocated
Produced } Head implementation



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

Allocated
Produced



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

enq(A)

Allocated
Produced



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B)

Allocated
Produced



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

C



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

zZZ zZZ

C



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

zZZ

CB



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

CBA



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

CBA



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

CBA



• New framework for mobile devices

• Few cores and many threads


• Communication via ring buffers 

• Problem with initial implementation:

• In-order operation limits performance 

• Out-of-order operations are challenging!

• See paper for related work

Story 2: Oversubscription and out-of-order operations

7

enq(A) enq(B) enq(C)

Allocated
Produced

CBA



Product stable on x86 for years

• Must migrate to Arm (TaiShan servers)


• Internally uses old DPDK ring buffer


• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8



Product stable on x86 for years

• Must migrate to Arm (TaiShan servers)


• Internally uses old DPDK ring buffer


• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8

Decision: too high risk of 

upgrading DPDK ring buffer



Product stable on x86 for years

• Must migrate to Arm (TaiShan servers)


• Internally uses old DPDK ring buffer


• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8

Decision: too high risk of 

upgrading DPDK ring buffer
Consequence:

• Annoying weak memory bug

	 due to a few missing fences


• More than 6 person-month to fix it


• Decision wasn’t the best



Product stable on x86 for years

• Must migrate to Arm (TaiShan servers)


• Internally uses old DPDK ring buffer


• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8

Decision: too high risk of 

upgrading DPDK ring buffer
Consequence:

• Annoying weak memory bug

	 due to a few missing fences


• More than 6 person-month to fix it


• Decision wasn’t the best



Product stable on x86 for years

• Must migrate to Arm (TaiShan servers)


• Internally uses old DPDK ring buffer


• Application grew intertwined with ring buffer

 Story 3: Migrating from x86 to Arm

8

Fence

Decision: too high risk of 

upgrading DPDK ring buffer
Consequence:

• Annoying weak memory bug

	 due to a few missing fences


• More than 6 person-month to fix it


• Decision wasn’t the best



Think hard and document

For example, printk_ringbuffer

How do people develop for WMM?

9



Think hard and document

For example, printk_ringbuffer

How do people develop for WMM?

9

Most just ignore topic

And wait to see what happens



Think hard and document

For example, printk_ringbuffer

How do people develop for WMM?

9

Most just ignore topic

And wait to see what happens

What about using tools?


We are in 2022!


There are scalable model checkers for WMM!


e.g., GenMC, Dartagnan, VSync



Our contributions


BBQ: Block-based Bounded Queue


• Novel block-based design


• Focus on enq-deq interference


• Support for out-of-order operations


• Verified for WMMs, pragmatically

10



Our contributions


BBQ: Block-based Bounded Queue


• Novel block-based design


• Focus on enq-deq interference


• Support for out-of-order operations


• Verified for WMMs, pragmatically

10

Bonus features


• Single/multi producers/consumers


• Fixed- and variable-sized entries


• Retry-new and drop-old modes


• Use of efficient atomic operations

• FAA and MAX (ARMv8.1 LSE)

• No CAS at all if MAX available



Agenda


Motivation


Stories and Challenges 

Interference, Out-of-order operations, Correctness on WMMs


BBQ — Block-based Bounded Queue


Insights to Tackle the Challenges


Selected Evaluation Results

11



BBQ — Block-based Bounded Queue

HeadTail

Block

Head

Block

Tail

Entry

Head

Entry

Tail

• Ring buffer split into blocks


• Block Head points to  
current producer block


• Block Tail points to      
current consumer block


• In each block:  Entry Head 
and Entry Tail

12



Dealing with interferences


13

enqueue

dequeue

update

update

Block

Tail

Block

Head

Entry

Head

Entry

Tail

Enq-Deq interference

No interference when producer 
and consumer in different blocks



Dealing with interferences


13

enqueue

dequeue

update

update

Block

Tail

Block

Head

Entry

Head

Entry

Tail

Enq-Deq interference

No interference when producer 
and consumer in different blocks

Block head and tail only read 
when moving to next block



Dealing with interferences


enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block

Tail

Block

Head

Entry

Head

Entry

Tail

Enq-Deq interference Enq-Enq interference

No interference when producer 
and consumer in different blocks

Block head and tail only read 
when moving to next block

Block

Head

Entry

Head

Efficient use of FAA no side effects: 
neither rollback nor  blocking



Dealing with interferences


enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block

Tail

Block

Head

Entry

Head

Entry

Tail

Enq-Deq interference Enq-Enq interference

No interference when producer 
and consumer in different blocks

Block head and tail only read 
when moving to next block

Block

Head

Entry

Head

Efficient use of FAA no side effects: 
neither rollback nor  blocking



Dealing with interferences


enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block

Tail

Block

Head

Entry

Head

Entry

Tail

Enq-Deq interference Enq-Enq interference

No interference when producer 
and consumer in different blocks

Block head and tail only read 
when moving to next block

Block

Head

Entry

Head

Efficient use of FAA no side effects: 
neither rollback nor  blocking

Head can move out-of-bounds, no 
consequence to following block.



Dealing with interferences


enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block

Tail

Block

Head

Entry

Head

Entry

Tail

Enq-Deq interference Enq-Enq interference

No interference when producer 
and consumer in different blocks

Block head and tail only read 
when moving to next block

Block

Head

Entry

Head

OK

Efficient use of FAA no side effects: 
neither rollback nor  blocking

Head can move out-of-bounds, no 
consequence to following block.



Dealing with interferences


enqueue

enqueue

enqueue

update

13

enqueue

dequeue

update

update

Block

Tail

Block

Head

Entry

Head

Entry

Tail

Enq-Deq interference Enq-Enq interference

No interference when producer 
and consumer in different blocks

Block head and tail only read 
when moving to next block

Block

Head

Entry

Head

OK

Efficient use of FAA no side effects: 
neither rollback nor  blocking

Head can move out-of-bounds, no 
consequence to following block.



Dealing with out-of-order operations


14

Block

Tail

Block

Head

Entry

Head 0/0

Produced/AllocatedEntry

Head

Entry

Tail



Dealing with out-of-order operations


14

Block

Tail

Block

Head

Entry

Head 0/0

Produced/AllocatedEntry

Head

Entry

Tail



Dealing with out-of-order operations


14

Block

Tail

Block

Head

Entry

Head

Produced/AllocatedEntry

Head

2/3

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues



3/4

Dealing with out-of-order operations


14

Block

Tail

Block

Head

Entry

Head

Produced/AllocatedEntry

Head

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues



3/4

Dealing with out-of-order operations


14

Block

Tail

Block

Head

Entry

Head

Produced/AllocatedEntry

Head

Entry

Head0/0

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues



3/4

Dealing with out-of-order operations


14

Block

Tail

Block

Head

Entry

Head

Produced/AllocatedEntry

Head

Entry

Head

2/2

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues



3/4

Dealing with out-of-order operations


14

Dequeue calls:

• return BUSY if an enqueue is ongoing 

in same block

• succeed when block full or when 

Produced = Allocated 

Block

Tail

Block

Head

Entry

Head

Produced/AllocatedEntry

Head

Entry

Head

2/2

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues



Dealing with out-of-order operations


14

4/4

Dequeue calls:

• return BUSY if an enqueue is ongoing 

in same block

• succeed when block full or when 

Produced = Allocated 

Block

Tail

Block

Head

Entry

Head

Produced/AllocatedEntry

Head

Entry

Head

2/2

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues



Dealing with out-of-order operations


14

4/4

Dequeue calls:

• return BUSY if an enqueue is ongoing 

in same block

• succeed when block full or when 

Produced = Allocated 

Block

Tail

Block

Head

Entry

Head

Produced/AllocatedEntry

Head

Entry

Head

2/2

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues



Dealing with out-of-order operations


14

4/4

Dequeue calls:

• return BUSY if an enqueue is ongoing 

in same block

• succeed when block full or when 

Produced = Allocated 

Block

Tail Block


Head

Entry

Head

Produced/AllocatedEntry

Head

Entry

Head

Entry

Tail

2/2

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues



Dealing with out-of-order operations


14

4/4

Dequeue calls:

• return BUSY if an enqueue is ongoing 

in same block

• succeed when block full or when 

Produced = Allocated 

Block

Tail Block


Head

Entry

Head

Produced/AllocatedEntry

Head

Entry

Head

Entry

Tail

2/2

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues



Dealing with out-of-order operations


14

4/4

Dequeue calls:

• return BUSY if an enqueue is ongoing 

in same block

• succeed when block full or when 

Produced = Allocated 

Block

Tail Block


Head

Entry

Head

Produced/AllocatedEntry

Head

Entry

Head

Entry

Tail

2/2

Entry

Tail

Enqueue calls:

• do not wait for others in same block to 

complete

• can move to next block even if current 

block has ongoing enqueues

Many cool tricks in the paper:


• update block and entry indices at 
the same time without D-CAS


• Avoid ABA issues with versioning


• Cache block indices for speed



BBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

BBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

~10 atomics

Correctness on WMMs with practical verificationBBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

BBQ Learnings

The cost of increased performance

increased complexity

º 10 atomics

DPDK-like algorithm

º 20 atomics

Part of BBQ

Diogo Behrens — diogo.behrens@huawei.com

25

More than 20 atomics

BBQ is not easy to digest



Correctness on WMMs with practical verification

• Long stress testing 
by engineers 

• Model check corner cases on WMM   
by engineers 


• Identification of corner cases  
by WMM experts and engineers 

• Only a few corner cases necessary 
queue full/empty, FIFO, wrap-around 

• 3 bugs found model checking them 
Not found while stress testing 

• Reproducible on real hardware 
Test cases were built in retrospect 



Agenda


Motivation


Stories and Challenges 

Interference, Out-of-order operations, Correctness on WMMs


Block-based Bounded Queue (BBQ)


Insights to Tackle the Challenges


Selected Evaluation Results

16



Micro-benchmark Results — SPSC

• x86 machines with 88 hyper-threads

• 8 bytes data size, 32k bytes memory usage

• simple: 11.3x to 42.4x higher throughput

Compared against 5 state-of-the-art bounded queues

17

simple



Micro-benchmark Results — SPSC

• x86 machines with 88 hyper-threads

• 8 bytes data size, 32k bytes memory usage

• simple: 11.3x to 42.4x higher throughput

Compared against 5 state-of-the-art bounded queues

17

simple

complex

• complex: at least 2x higher than FollyQ



DPDK Test Suite (DTS) — Multiprocess benchmark

18

Te
st

er
TR

ex
 10GB


link

10GB

link

Traffic

Generator Device Under Test (DUT)

• Device Under Test

• One server process 

receiving and distributing packets

• Two client processes 

performing level-2 packet forwarding


• Tester and traffic generator run on 
another machine


• BBQ yields 1.5x throughput of DPDK 



Macro-benchmark Results — Disruptor


• Compared on three official Disruptor benchmarks

	    Against Java queue, BBQ in Java, and BBQ in C via JNI

• LMAX Disruptor: bounded queue for high-performance trading

• With 32 producers, BBQ yields 3 Mop/s and Disruptor 0.6 Mop/s 

19



Wrap up 


20

Large spectrum of scenarios

• Single/Multi Consumer/Producer

• Retry-new and Drop-old modes

• Etc

BBQ is a novel ring buffer design

• Reduces enq-deq interference

• Supports out-of-order operations

• Model checked for WMMs

Greatly outperforms several

industrial ring buffers

Please look up the paper 
for many more results



Thank you! Questions?

(BTW, we are hiring in Dresden and Munich…)


