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Abstract. The SPARCv8 instruction set architecture (ISA) has been
widely used in various processors for workstations, embedded systems,
and space missions. In order to formally verify the correctness of embed-
ded operating systems running on SPARCv8 processors, one has to for-
malize the semantics of SPARCv8 ISA. In this paper, we present our
formalization of SPARCv8 ISA, which is faithful to the realistic design of
SPARCv8. We also prove the determinacy and isolation properties with
respect to the operational semantics of our formal model. In addition,
we have verified that a trap handler function handling window overflows
satisfies the user’s expectations based on our formal model. All of the
formalization and proofs have been mechanized in Coq.
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1 Introduction

Computer systems have been widely used in national defense, finance and other
fields. Building high-confidence systems plays a significant role in the develop-
ment of computer systems. Operating system kernel is the most foundational
software of computer systems, and its reliability is the key in building high-
confidence computer system.

In aerospace and other security areas, the underlying operating system is
usually implemented in C and assembly languages. In existing OS verification
projects, e.g., CertiμC/OS-II [20] and seL4 [17], the assembly code is usually not
modeled in order to simplify the formalization of the target machine. They use
abstract specifications to describe the behavior of the assembly code to avoid
exposing the details of underlying machines, e.g., register and stack. Therefore,
the assembly code in OS kernels is not actually verified. To verify whether the
assembly code satisfies its abstract specifications, it is inevitable to formalize the
semantics of the assembly instructions.
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As a highly efficient and reliable microprocessor, the SPARCv8 [6] instruc-
tion set architecture has been widely used in various processors for worksta-
tions, embedded systems, and space missions. For instance, SpaceOS [19] run-
ning on SPARCv8 processors is an embedded operating system developed by
Beijing Institute of Control Engineering (BICE) and deployed in the central
computer of Chang’e-3 lunar exploration mission. On the one hand, to formally
verify SpaceOS, we need to formalize the SPARCv8 instruction set and build the
mathematical semantic model of the assembly instructions. On the other hand,
to ensure the consistency between the behavior of the target assembly code and
the C source code, we hope to use the certified compiler CompCert [18] to com-
pile SpaceOS. However, CompCert only supports translating Clight, which is
an important subset of C, into ARM [1], x86 [10], PowerPC [5] instruction set
currently. It does not support SPARCv8 at the backend. Extending CompCert
to support SPARCv8 requires us to formalize the SPARCv8 instruction set. In
this paper, we make the following contributions:

– We formalize the SPARCv8 ISA. Our formal model is faithful to the behaviors
of the instructions described in the SPARCv8 manual [7], including most of
the features in SPARCv8, e.g., windowed registers, delayed control transfer,
interrupts and traps.

– We prove that the operational semantics of our formal model satisfy the
determinacy property, and the execution in the user mode or the supervisor
mode satisfies the isolation property.

– We take the trap handler for window overflows as an example, and give its pre-
condition and post-condition to specify the expected behaviors. Like proving
programs with Hoare triples, we prove that the trap handler satisfies the given
pre-/post-conditions and does not throw any exceptions.

– All of the formalization and proofs have been mechanized in Coq [2]. They
contain around 11000 lines of coq scripts in total. The source code can be
accessed via the link [3].

Related Work. Fox and Myreen gave the ARMv7 ISA model [14], they used
monadic specification and formalized the instruction decoding and operational
semantics. Narges Khakpour et al. proved some security properties of ARMv7 in
the proof assistant tool HOL4, including the kernel security property, user mode
isolation property, and so on. Andrew Kennedy et al. formalized the subset of
x86 in Coq [16], and they used type classes, notations and the mathematics
library Ssreflect [8]. The CompCert compiler also has the formal modeling of
ARM and x86. There are lots of modeling work related to the x86 and ARM,
but due to the specific features of SPARCv8, these x86 and ARM ISA models
can not be used directly for the SPARCv8 ISA.

Zhe Hou et al. modeled the SPARCv8 ISA in the proof assistant tool
Isabelle [15], which is close to our work. But their work is focused on the
SPARCv8 processor itself, instead of the assembly code running on it. To ver-
ify the assembly code, we need a better definition on the syntax and operation
semantics. And the definition of machine state needs to be hierarchical and
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easy to use when we verify the code running on it. Additionally, they did not
model the interrupt feature in SPARCv8, hence their model could not describe
the uncertainty of the operational semantics caused by interrupt. Besides, our
formalization of the SPARCv8 ISA is implemented in Coq, while CompCert is
implemented in Coq too. We can use our Coq implementation to extend the
CompCert at the backend to support SPARCv8 in the future.

There are some other verification work at assembly level [11–13], which give
the formal models of different subset of x86 the instruction set and the behavior
of the x86 interrupt management. They mainly study the verification technology
of x86 assembly code, the instruction set is relatively small. In the meanwhile,
the model is simple. We formalized the SPARCV8 ISA by considering all the
features of SPARCv8. In the next section, we will give a brief overview of these
features.

2 Overview of SPARCv8 ISA

The Scalable Processor Architecture (SPARC) is a reduced instruction set com-
puting (RISC) instruction set architecture (ISA) originally developed by Sun
Microsystems [9]. It is widely used in the electronic systems of space devices for
its high performance, high reliability and low power consumption. Compared to
other architectures, SPARCv8 has the following unique mechanisms:

– A variety of control-transfer instructions (CTIs) and annulled delay instruc-
tions for more flexible function jumps.

– The register window and window rotation mechanism for swapping context
more efficiently.

– Two modes, user mode and supervisor mode, for separating the application
code and operating system code at the physical level.

– A variety of traps for swapping modes through a special trap table that
contains the first 4 instructions of each trap handler.

– Delayed-write mechanism for delaying the execution of register write opera-
tion for several cycles.

These characteristics pose quite a few challenges for formal modeling. We use
the example below to demonstrate the subtle control flow in SPARCv8.

Example. The following function CALLER calls the function SUM3 to add three
variables together.

CALLER:

...

1 mov 1, %o0

2 mov 2, %o1

3 call SUM3

4 mov 3, %o2

5 mov %o0, %l7

...

SUM3:

6 save %sp, -64, %sp

7 add %i0, %i1, %l7

8 add %l7, %i2, %l7

9 ret

10 restore %l7, 0, %o0
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The function SUM3 requires three input parameters. When the CALLER calls
SUM3, it places the first two arguments, then calls SUM3 (Line 3) before placing the
third argument (Line 4). In other words, the call instruction will be executed
before the mov instruction which places the last argument. The reason is that
when we call an another function by using instructions such as call, it will
record the address that is going to jump to in the current execution cycle. The
real transfer procedure is executed in the next instruction cycle. This feature is
called “delayed transfer”, which also happens at lines 9 and 10.

In SUM3, we use save and restore instructions (Lines 6 and 10) to save and
restore the caller’s context. When this program is running, both CALLER and
SUM3 have register windows as their contexts, and their windows are overlapping.
When the CALLER needs to save the context and pass the parameters to SUM3,
it will put the parameters in the overlapping section and rotates the window so
that the SUM3’s register window is exposed. At this point, the non-overlapping
portion of the CALLER’s window is hidden. These steps are implemented by the
save instruction. When SUM3 needs to pass the return value to the CALLER, it
will put the return value in the overlap section and rotate the window to destroy
its own space. These steps are implemented by the restore instruction.

The semantics of the delayed transfer and the window rotation mechanism
are quite tricky in SPARCv8. In addition, other special mechanisms of SPARCv8
mentioned above are complicated and their behaviors are non-trivial. Therefore,
it is necessary to give a formal model of the SPARCv8 ISA, which is the basis
of verifying the SPARCv8 code.

3 Modeling SPARCv8 ISA

The SPARCv8 instruction set provides programmers with a hardware-oriented
assembly programming language. To formalize it, first we need to provide the
abstract syntax of the given language. Then we define the machine state. Finally,
we give the operational semantics for the instructions.

3.1 Syntax

Figure 1 shows the syntax of the SPARCv8 assembly language. Here we only give
some typical instructions i that show the key features introduced in Sect. 2. bicca
makes a delayed control transfer if the condition η holds, otherwise it annuls the
next instruction and executes the following code (unless η is al, as explained in
Sect. 3.3). The conditional expression η can be always (al), equal (eq), not equal
(ne), etc.. save (or restore) saves (or restores) the caller’s context by rotating
the register window. ticc triggers a software trap, and rett returns from traps.
wr writes some specific registers, which are defined as Symbol. Symbol contains
the processor state register (psr), window invalid mask register (wim), trap base
register (tbr), multiply/divide register (y) and ancillary state registers (asr). asr
are used to store the processor’s ancillary state. The write by wr may be delayed
for several cycles, as explained in Sects. 3.2 and 3.3.
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Fig. 1. The syntax of the SPARCv8 assembly language

The address expressions, operand expressions and trap expressions in these
instructions are defined as OpExp, AddrExp and TrapExp. w stands for 32-bit
integer constants (Word). r stands for general registers (GenReg).

Note that the call, mov, and ret instructions in the example in Sect. 2 are
not given in the syntax, since they are all synthetic instructions, which can be
defined from the basic instructions [7].

3.2 Machine States

Register File. Here we give the definition of the register files (RegFile).

(RegName) q :: = r | ς | pc | npc | κ | τ (RegFile) R ∈ RegName → Word

We use q to represent the register name (RegName), including GenReg and
Symbol, which were explained in Sect. 3.1. It also includes the program counter
pc, the next program counter npc, the trap flag τ and annulling flag κ. A register
file R is modeled as a total function mapping register names to 32-bit integers.

Program Counters. SPARCv8 uses two program counters, viz., pc and npc to
control the execution. pc contains the address of the instruction currently being
executed, while npc holds the address of the next instruction (assuming a trap
does not occur). The function next below defines the change of program counters
when no transfer occurs. It updates pc with npc and increases npc by 4.

next(R)
def
=== R{pc � R(npc)}{npc � R(npc) + 4}

If transfer occurs during the instruction execution, for example, if the evaluation
of conditional expression returns true when we execute the instruction bicca, the
function djmp will be executed:

djmp(w, R)
def
=== R{pc � R(npc)}{npc � w}

djmp updates pc with npc and sets npc to the target address. As mentioned in
the example in Sect. 2, when we call a function, the target address w is stored
in npc in the current execution cycle. Because the next instruction is fetched
from pc, the transfer is not made immediately and is delayed to the next cycle
instead. The delayed transfer is applied for all transfer instructions in SPARCv8.
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Window Registers. We use the frame and the frame list to describe the win-
dow registers and window rotating. The definitions are given as follows:

(Frame) f :: = [w0, . . . , w7]
(RState) Q :: = (R, F )

(FrameList) F :: = nil | f ::F

A frame is an array that contains 8 words, and a frame list is a list of frames
and its length is 2N-3 (N is the number of windows).

We divide the general registers (r0 . . . r31) in the register file R into four
groups, global out, local and in, as shown in Fig. 2(1). They represent the current
view of the accessible general registers. There are also registers unaccessible,
which are grouped into frames and stored on the frame list. We pair the register
file and the frame list together as the register state Q.

Fig. 2. Left rotation of the window

The view of currently accessible registers can be changed by rotating the
window, which exchanges the data between the register file and the frame list.
This is done to save and restore execution contexts, as what the caller and
sum3 do in the example in Sect. 2. Below we demonstrate the left rotation of
the window in Fig. 2. The formal definition is given as left win(Q) in Fig. 3. The
rotation takes the following steps:

– We convert three groups of the general registers (out, local and in) into a frame
list consisting of 3 frames, as shown in Fig. 2(1). The conversion is formalized
as fetch(R) in Fig. 3.

– As shown in Fig. 2(2) and (4), we can insert these 3 frames at the end of the
frame list, then left rotate the frame list.
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Fig. 3. Definition of the window rotation

– Finally, as shown in Fig. 2(4) and (3), we remove 3 frames from the tail of the
frame list, and insert them to the corresponding positions in the 32 general
registers. The last two steps are modeled as (F ′, l) := left(F, fetch(R)) and
R′ := replace(l, R) in Fig. 3.

Since the left rotation of the window increases the label of current window by 1,
we also need to update the current window pointer (cwp, a segment of psr) to
the new value, namely post cwp.

Delayed Writes. When we execute the wr instruction to write the symbol
register, the execution will be delayed for X cycles (0 ≤ X ≤ 3). The value of X
is implementation-dependent. The delay list D consists of a sequence of delayed
writes d. Each d is a triple consisting of the remaining cycles to be delayed, the
target register and value to be written.

(InitDC) X ∈ [0..3]
(DelayCycle) c ∈ [0..X]

(DelayItem) d :: = (c, ς, w)
(DelayList) D :: = nil | d::D

There are 2 operations defined on the delay list, as shown bellow.

– When we execute the wr instruction, we will insert a delayed write into the
delay list using function set delay:

set delay(ς, w, D)
def
=== (X, ς, w)::D

– At the beginning of each instruction cycle, we scan the delay list, remove the
delayed writes whose delay cycles are 0 and execute them, and then decrement
the delay cycles of the remaining delayed writes, as shown below:
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exe delay(Q, D)
def
===

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(write symbol(ς, w, Q), D′) if D = (0, ς, w)::D′,
let (Q′, D′′) := exe delay(Q, D′)
in (Q′, (n − 1, ς, w)::D′′) if D = (n, ς, w)::D′,

n �= 0

(Q, D) otherwise
where Q = (R, F )

write symbol writes the value w into the register ς. The details can be found
in the technical report [4].

Machine States and Code Heap. We use M to represent the memory
(Memory), which maps the addresses (Address) to words. The full memory is
split into two parts for the user mode and the supervisor mode respectively. We
formalize the memory as a pair that consists of the user memory Mu and the
supervisor memory Ms. The machine state S contains the memory pair Φ, the
register state Q and the delay list D.

(Address) a ∈ Word
(Memory) M ∈ Address ⇀ Word

(MemPair) Φ :: = (Mu, Ms)
(State) S :: = (Φ, Q, D)

Besides the machine state, we also define the code heap C, the pair of code
heap Δ and the event e, shown as below.

(Label) l ∈ Word
(CodeHeap) C ∈ Label ⇀ SparcIns
(CodePair) Δ :: = (Cu, Cs)

(World) W :: = (Δ, S)
(Event) e :: = w | ⊥

(EventList) E :: = nil | e::E

C represents the code heap, which maps the labels to the instructions. The
code heap of user mode and supervisor mode together form the pair of code
heap Δ. The whole world W consists of the code heap Δ of two modes and the
machine state S. e stands for events. If a trap occurs, the corresponding trap
label w is recorded as an event, otherwise it is ⊥. An event list E is introduced
for producing events of the multi-step execution.

3.3 Operational Semantics

We define the operational semantics with multiple layers as shown in Fig. 4,
where the main features of SPARCv8 are introduced at different layers. This
layered operational semantics is good for our verification work, for example,
when we verify some instructions such as bicca, ticc, etc., we will only consider
the register file and memory. If we put the exposed window register and the
hidden window register on the same layer as [7] or [15] does, all the registers will
always show up in the verification process.

In Fig. 4, from the top to the bottom, we first define the operational semantics
of some simple instructions which only access the register file and memory using
the transition (M,R) i−−−→ (M ′, R′).
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Fig. 4. The structure of operational semantics

Secondly, we lift the first layer and give the operational semantic of specific
instructions about the window register and delayed write features using the
transition (M,Q,D) ◦ i−−−→ (M ′, Q′,D′).

Thirdly, we use the transition C � (M,Q,D) •−−−→ (M ′, Q′,D′) to define
the operational semantics of delay execution and annulling flag handling.

Finally, we give the operational semantic rules of interrupt, trap execution
and mode switch as the transition Δ � S

e====⇒ S′, which defines the whole
behavior of the entire program. Next, we will introduce some rules of the oper-
ational semantics of each layer. The omitted rules can be found in the technical
report [4] and our Coq implementations [3].

Simple Instructions. The bicca η β instruction evaluates the address expres-
sion β to get the value w, and requires the address w to be word-aligned. It
decides whether to transfer and whether to annul the next instruction by the
conditional expression.

– If the value of the conditional expression is false, it makes no transfer and
sets the annulling flag only.

[[ β ]]R = w word aligned(w) [[ η ]]R = false

(M, R)
bicca η β−−−−−−−→ (M, set annul(next(R)))

(bicca-false)

– If the type of the conditional expression is not al and the value is true, it
executes the delayed transfer but does not annul the next intruction.

[[ β ]]R = w word aligned(w) η �= al [[ η ]]R = true

(M, R)
bicca η β−−−−−−−→ (M, djmp(w, R))

(bicca-true)

– If the type of the conditional expression is al, we will execute the delayed
transfer and set the annulling flag. The rule is omitted here (see TR [4]).

Recall the definition of next and djmp in Sect. 3.2. Other functions not defined
here can be found in the TR [4].
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ticc η γ evaluates the trap expression γ. If the condition η is true, it sets
the trap flag (set user trap). We use w<6:0> to represent the lowest 7 bits of w.
ticc η γ does nothing if η is false (the corresponding rule omitted).

[[ γ ]]R = w [[ η ]]R = true

(M, R)
ticc η γ−−−−−→ (M, set user trap(w<6:0>, R))

(ticc-true)

Rules for other simple instructions are given in the TR [4].

Window Registers and Delayed Writes. Here we give semantics for instruc-
tions that manipulate the frame list and delay list. First, we use the lift1 rule
to lift the transition (M,R) i−−−→ (M ′, R′) to (M,Q,D) ◦ i−−−→ (M ′, Q′,D′).

(M, R)
i−−−→ (M ′, R′)

(M, (R, F ), D) ◦ i−−−→ (M ′, (R′, F ), D)
(lift1)

When the wr rd α ς instruction is executed in user mode (usr mode), since it
does not have permissions for access the register wim, tbr and psr, so ς must
be y or asri. Then it executes the XOR operation of α and rd to get the value
w. Next we insert the triple (X, ς, w) into the delay list D using the function
set delay (see Sect. 3.2). Finally, it resets pc and npc with the function next.

Fig. 5. Auxiliary definitions
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usr mode(R) ς=y or asri [[ rd ]]R xor [[ α ]]R=w D′ = set delay(ς, w, D)

(M, (R, F ), D) ◦wr rd α ς−−−−−−−→ (M, (next(R), F ), D′)
(wrusr)

When the wr rd α ς instruction is executed in supervisor mode, it has fully
access to all symbol registers. The rule of it is given in the TR [4].

For the rules save and restore, we first decrease or increase the label of
the window using the function dec win or inc win. Then we evaluate the operand
expression α to get the value a. Next we assign the value of [[ rs ]]R + a to rd.
The definition of the inc win can be found in Fig. 5. The increasing operation is
allowed if the post-window (post cwp) is not masked (¬win masked). The func-
tion dec win is similar to the inc win and therefore it is not given here.

dec win(R, F ) = (R′, F ′) [[ α ]]R = a R′′ = R′{rd � [[ rs ]]R + a}
(M, (R, F ), D) ◦save rs α rd−−−−−−−−→ (M, (next(R′′), F ′), D)

(save)

inc win(R, F ) = (R′, F ′) [[ α ]]R = a R′′ = R′{rd � [[ rs ]]R + a}
(M, (R, F ), D) ◦restore rs α rd−−−−−−−−−−→ (M, (next(R′′), F ′), D)

(restore)

For the rule rett, we first require that the trap is not enabled (¬trap enabled)
and the system is in supervisor mode (sup mode). Then we evaluate the address
expression β to get the value w and require the address w to be word-aligned.
Then we increase the label of the window (inc win), enable the trap (enable trap)
and restore the previous mode (restore mode) by using function rett f, which is
defined in Fig. 5. Finally, the system transfers to the address w by using djmp.

¬trap enabled(R) sup mode(R) [[ β ]]R = w
word aligned(w) rett f(R, F ) = (R′, F ′)

(M, (R, F ), D) ◦rett β−−−−→ (M, (djmp(w, R′), F ′), D)

(rett)

Exceptions. If some of the conditions (e.g., word-aligned) in the above rules are
not satisfied, the system will throw exceptions. Exceptions include traps and
abortions. Traps such as divided by zero, memory not aligned, window overflow,
and so on, will put the trap type label into the trap type register (a segment of
tbr), then the system will execute this trap in the next cycle (see the explanation
below). The abortions make the system to get stuck.

Executing Delay and Handling Annulling Flag. Here we check the delay
list and handle the annulling flag.

– The exe delay function executes the delayed writes (as described in Sect. 3.2).
If the annulled flag has not been setted (¬annulled), it will pick up an instruc-
tion from the code heap and execute it.

exe delay(Q, D) = (Q′, D′) ¬annulled(Q′)

C(Q′.pc) = i (M, Q′, D′) ◦ i−−−→ (M ′, Q′′, D′′)

C � (M, Q, D) •−−−→ (M ′, Q′′, D′′)



Formalizing SPARCv8 Instruction Set Architecture in Coq 311

– Otherwise, If the annulled flag has been setted (annulled), it will skip one
instruction and unset the annulling flag (clear annul).

exe delay(Q, D) = (Q′, D′) annulled(Q′) next(clear annul(Q′)) = Q′′

C � (M, Q, D) •−−−→ (M, Q′′, D′)

Interrupts, Traps and Mode Switch. In each instruction cycle, we deal with
interrupts and traps first.

– If there is an interrupt request with level w and it is allowed (interrupt), the
system triggers a trap after this external interrupt happens. It will record the
trap type (get tt) and execute this trap (exe trap), then it will dispatch an
instruction. The definition of interrupt and get tt can be found in the technical
report [4].

interrupt(w, Q) = Q′ get tt(Q′) = w′ exe trap(Q′) = Q′′

Cs � (Ms, Q
′′, D) •−−−→ (M ′

s, Q
′′′, D′)

(Cu, Cs) � ((Mu, Ms), Q, D)
w′

=====⇒ ((Mu, M ′
s), Q

′′′, D′)

When we execute the trap (exe trap), first we need to make sure that the
system allows traps to occur (trap enabled). Then we rotate the window to
the right (right win), forbid traps to occur (disable trap), save the current
mode (save mode) and enter the supervisor mode (to sup). Finally we save
pc and npc to register r17 and r18 by using function save pc npc, unset the
trap flag (clear trap) and jump to the address of the trap handler (tbr jmp).
Function exe trap, tbr jmp and save pc npc are defined in Fig. 5. The function
right win is similar to the left win and therefore it is not given here.

– If the system has a trap, it will record and execute this trap, and then dispatch
an instruction.

has trap(Q) get tt(Q) = w exe trap(Q) = Q′

Cs � (Ms, Q
′, D) •−−−→ (M ′

s, Q
′′, D′)

(Cu, Cs) � ((Mu, Ms), Q, D)
w

=====⇒ ((Mu, M ′
s), Q

′′, D′)

– If the system does not have traps, it will select the code heap and the memory
according to the mode (usr mode or sup mode) and dispatch an instruction.

¬has trap(Q) usr mode(Q) Cu � (Mu, Q, D) •−−−→ (M ′
u, Q′, D′)

(Cu, Cs) � ((Mu, Ms), Q, D) ====⇒ ((M ′
u, Ms), Q

′, D′)

¬has trap(Q) sup mode(Q) Cs � (Ms, Q, D) •−−−→ (M ′
s, Q

′, D′)

(Cu, Cs) � ((Mu, Ms), Q, D) ====⇒ ((Mu, M ′
s), Q

′, D′)
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Multi-step Execution. In a single step, the system changes from the state S to
the state S′ and produces an event e. The event e is used to record whether the
system has a trap in an instruction cycle. If the trap occurs, it will record the
trap type into the event list. Otherwise e is ⊥ for steps where no trap occurs.
The transition of zero-or-multiple steps is defined as below.

Δ � S | nil
======⇒0 S

Δ � S
e

====⇒ S′′ Δ � S′′ | E
=====⇒n S′

Δ � S | e::E
======⇒n+1 S′

4 Determinacy and Isolation Properties

In this section, we will prove that our formal model satisfies the determinacy
and isolation properties. The determinacy property explains that the execution
of the machine is deterministic with the given sequence of external interrupts.
The isolation property characterizes separation of the memory space of the user
mode and the supervisor mode, which guarantees the space security of the entire
system.

We use Δ � S | E==⇒∗ S1 to represent zero-or-multiple steps of the execution
under the given sequence of external interrupts E. Theorem 4.1 says that, if two
executions start from the same initial states and both of them produce the same
sequence of external interrupts, then they should arrive at the same final states.

Theorem 4.1 (Determinacy). If Δ � S | E==⇒∗ S1, Δ � S | E==⇒∗ S2, then
S1 = S2. where Δ � S | E==⇒∗ S′ is defined as ∃n,Δ � S | E==⇒n S′.

In SPARCv8 ISA, triggering a trap is the only way of switching to the super-
visor mode. We will prove this property first. That is, if a system is running in
the user mode at the beginning, it will run in the user mode forever if there is
no trap. First, we give the conditions of running n steps in user mode as below:

Δ � S •==⇒n S′ def
=== usr mode(S) ∧ empty DL(S) ∧ Δ � S | E

==⇒n S′

∧ no trap event(E)

where

empty DL(S)
def
=== D = nil where S = ((Mu, Ms), Q, D)

no trap event(E)
def
=== ∀e ∈ E, e = ⊥

We first require the system to be in the user mode initially (usr mode). Sec-
ond, because of the delayed write feature, we need to require the delay list to
be empty (empty DL), otherwise the system may enter the supervisor mode if
there is a delayed write item in the delay list that will modify the S segment
of PSR. Finally, we require there is no trap in the system after several steps
(no trap event).

After giving these conditions, we need to prove that the system is always
running in the user mode under these conditions, as shown in Theorem 4.2:
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Theorem 4.2 (In User Mode). If Δ � S •==⇒n S′, then usr mode(S′).

It says that, if the system satisfies all the conditions defined in
Δ � S •==⇒n S′, it will be in the user mode after n steps. Since this theorem
is true for all n, the system should be in the user mode after arbitrary steps.
So we can call Δ � S •==⇒n S′ as “the system is running in the user mode for
n-steps”. This property will be used in proving the isolation property later.

Based on Theorem 4.2, we apply it to prove if a system is running in user
mode, it does not have the permission to read and write the resource that belongs
to the supervisor mode. The isolation property is shown bellow:

Theorem 4.3 (Write Isolation). If Δ � S •==⇒n S′, then sup part eq(S, S′)

where

sup part eq(S, S′)
def
=== Ms = M ′

s

where S = ((Mu, Ms), Q, D) , S′ = ((M ′
u, M ′

s), Q
′, D′)

Theorem 4.4 (Read Isolation). If usr code eq(Δ1,Δ2), usr state eq(S1, S2),
and Δ1 � S1 •==⇒n S′

1, Δ2 � S2 •==⇒n S′
2, then usr state eq(S′

1, S
′
2)

where

usr state eq(S, S′)
def
=== Q = Q′ ∧ Mu = M ′

u

where S = ((Mu, Ms), Q, D) , S′ = ((M ′
u, M ′

s), Q
′, D′)

usr code eq(Δ, Δ′)
def
=== Cu = C′

u

where Δ = (Cu, Cs) , Δ′ = (C′
u, C′

s)

Theorem 4.3 shows that if the system is running in the user mode, it does not
modify the resource that belongs to the supervisor mode. Theorem 4.4 shows
that if a particular part of two systems are the same at the beginning, they will
always be the same when the system is running in the user mode for several
steps. The above two theorems show the isolation property of SPARCv8.

5 Verifying a Window Overflow Trap Handler

In this section, we verify a trap handler, which is used to handle exception of
the window overflow. The number of windows provided by SPARCv8 is finite. If
we execute the save instruction to save the context when all the windows have
already been used, it will cause a window overflow trap. The window overflow
trap handler will be executed to handle the trap. We give the code of the trap
handler as below.

First, the handler takes the next window as the masked window, which is
implemented by loop shift operation (Lines 1–5 and 7–10). Then the pointer
(named cwp, a segment of psr) that always points to the current window points to
the next window, and we store the value of the current window into the memory
(Lines 6 and 11–26). Finally, the handler restores cwp and returns (Lines 27–30).
The window overflow trap handler saves the oldest element of the window into
the memory and makes the window available for the upcoming save operation.
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WINDOW OVERFLOW:

1 mov %wim,%l3

2 mov %g1,%l7

3 srl %l3,1,%g1

4 sll %l3,NWINDOWS-1,%l4

5 or %l4,%g1,%g1

6 save

7 mov %g1,%wim

8 nop

9 nop

10 nop

11 st %l0,[%sp+0]

12 st %l1,[%sp+4]

13 st %l2,[%sp+8]

14 st %l3,[%sp+12]

15 st %l4,[%sp+16]

16 st %l5,[%sp+20]

17 st %l6,[%sp+24]

18 st %l7,[%sp+28]

19 st %i0,[%sp+32]

20 st %i1,[%sp+36]

21 st %i2,[%sp+40]

22 st %i3,[%sp+44]

23 st %i4,[%sp+48]

24 st %i5,[%sp+52]

25 st %i6,[%sp+56]

26 st %i7,[%sp+60]

27 restore

28 mov %l7,%g1

29 jmp %l1

30 rett %l2

To verify this window overflow trap handler, we first need to give its specifi-
cations, namely, the precondition and the postcondition shown as below:

overflow pre cond(W )
def
=== single mask(R(cwp), R(wim)) ∧ handler context(R)

∧ normal cursor(R) ∧ align context(Q) ∧
set function(R(pc),windowoverflow, Cs) ∧
D = nil ∧ length(F ) = 2N − 3

where W = (Δ, (Φ, Q, D)), Δ = (Cu, Cs), Q = (R, F )

overflow post cond(W )
def
=== single mask(pre cwp(2, R), R(wim))

where W = (Δ, (Φ, Q, D)), Q = (R, F )

In the pre-condition, single mask(w,R(wim)) indicates that the system sim-
ply masks the window w, and the rest of the window is all available. pre cwp(n,R)
gives the window in front of the current window and the distance of them is
n. handler context contains the unique state of the system after the exe trap
function is executed. For example, the system must be in the supervisor mode,
the trap must be disabled, and so on. normal cursor and handler context illus-
trate the requirements for pc and npc before entering the overflow trap handler.
align context requires the address to be word-aligned. The rest gives the require-
ments for the delay list and the frame list.

In the post-condition, when we finish running the trap handler and return to
the original function where the trap occurs, cwp will point to the window used by
the original function. At this point, the next window is no longer masked, which
means the next window is available. In SPARCv8, when we execute the save
instruction and enter the next window, the label of the window is decreased. So
we use pre cwp(2, R) to represent the label of the window that has been masked,
which also means that we have an available window now.
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Then we verify the correctness of the handler by showing that the handler
can be safely executed under the given pre-condition. As shown in Theorem 5.1,
it says, if the initial state satisfies the precondition, then we can safely execute
to a resulting state satisfying the postcondition within 30 steps, and no trap
occurs during the execution. More details about the specification and proofs can
be found in the technical report [4] and our Coq implementation [3].

Theorem 5.1 (Correctness of the Window Overflow Trap Handler).

If overflow pre cond(Δ,S), then forall S’ and E, if Δ � S | E==⇒30 S′, then
overflow post cond(Δ,S′) and no trap event(E).

6 Conclusion and Future Work

In this paper, we have formalized the SPARCv8 instruction set in Coq, which
provides the formal model for verifying SpaceOS at the assembly level. Also the
formalization can help us to add SPARCv8 into the backend of CompCert in the
future. Since the correctness and availability are also critical in formal modeling
of SPARCv8, we prove the determinacy and isolation properties to validate the
model, and we also verify the window overflow handler to show the availability
of our formalization.

For the future work, we will give the syntax and operational semantics of
the remaining instructions, including integer arithmetic instructions, floating
point instructions, and coprocessor instructions. To facilitate the code verifica-
tion process, we will develop a program logic for reasoning about the assembly
code, instead of doing verification in terms of the operational semantics directly.
We hope to extend CompCert backend to support the SPARCv8 assembly
language.
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