
Work Stealing through Partial 
Asynchronous Delegation

Jiawei Wang1 2, Yutao Liu1, Ming Fu1, Hermann Härtig2, and Haibo Chen1 3

[1] [2] [3]



Work Stealing -- Load Balancing for Multi-core Task Processing

qu
eu

e

qu
eu

e

qu
eu

e

…

worker

…



Work Stealing -- Load Balancing for Multi-core Task Processing

qu
eu

e

qu
eu

e

qu
eu

e

…

put
get

①

worker

A worker (core) puts on / gets from its queue①

…



Work Stealing -- Load Balancing for Multi-core Task Processing

qu
eu

e

qu
eu

e

qu
eu

e

…

put
get

①
②

worker

A worker (core) puts on / gets from its queue
When its queue is empty, it selects another queue 

①
②

…



Work Stealing -- Load Balancing for Multi-core Task Processing

qu
eu

e

qu
eu

e

qu
eu

e

…

put
get steal①

③

②

worker

A worker (core) puts on / gets from its queue
When its queue is empty, it selects another queue 

and try to steal from it.

①
②
③

…



Work Stealing -- Load Balancing for Multi-core Task Processing

qu
eu

e

qu
eu

e

qu
eu

e

…

put
get steal①

③

②

worker

A worker (core) puts on / gets from its queue
When its queue is empty, it selects another queue 

and try to steal from it.

①
②
③

Work Stealing Scenarios

…



Existing Works and Their Limitations

ABP [SPAA’98]:
qu

eu
e

put
get

steal

worker

…



Existing Works and Their Limitations

ABP [SPAA’98]: 
- Costly synchronization primitives for every pus/get

qu
eu

e

put
get

steal

worker

…



Existing Works and Their Limitations

ABP [SPAA’98]: 
- Costly synchronization primitives for every pus/get

Delegation [PPoPP’13]:

qu
eu

e

get

worker

…

request

response

①
②

③



Existing Works and Their Limitations

ABP [SPAA’98]:
- Costly synchronization primitives for every pus/get

Delegation [PPoPP’13]:
- Spinning on the thief side, waiting for a response
- The owner is burdened with delegated workloads
- The owner and thieves frequently access the same 
communication variables (contention)

qu
eu

e

get

worker

…

request

response

①
②

③



Existing Works and Their Limitations

put
get

steal

worker

…

ABP [SPAA’98]:
- Costly synchronization primitives for every pus/get

Delegation [PPoPP’13]:
- Spinning on the thief side, waiting for a response
- The owner is burdened with delegated workloads
- The owner and thieves frequently access the same 
communication variables (contention)

BWoS [OSDI’23]:



Existing Works and Their Limitations

put
get

steal

worker

…

ABP [SPAA’98]:
- Costly synchronization primitives for every pus/get

Delegation [PPoPP’13]:
- Spinning on the thief side, waiting for a response
- The owner is burdened with delegated workloads
- The owner and thieves frequently access the same 
communication variables (contention)

BWoS [OSDI’23]:
- Thieves can’t steal from the block where the owner is 

(Bad performance in specific scenarios)



Our Solution: Partial Asynchronous Delegation

put
get

worker

…

Using the block-based design [ATC’22, OSDI’23] to avoid 
contention



Our Solution: Partial Asynchronous Delegation

put
get

steal directly

worker

…

Using the block-based design [ATC’22, OSDI’23] to avoid 
contention

Partial: 
- Delegation is enabled only for the block where the owner is 
present
- When the owner advances to the next block, the delegation 

of owner’s current block is closed, and the next one is opened
- Allows for stealing from the owner’s block compared to BWoS

steal by delegation

Partial



Our Solution: Partial Asynchronous Delegation

put
get

steal directly

worker

…

Using the block-based design [ATC’22, OSDI’23] to avoid 
contention

Partial: 
- Delegation is enabled only for the block where the owner is 
present
- When the owner advances to the next block, the delegation 

of owner’s current block is closed, and the next one is opened
- Allows for stealing from the owner’s block compared to BWoS

Asynchronous: 
- A steal operation requests for the next steal op.
- A thief requests entry i+1 and obtains entry i that is requested 
by the previous steal operation (if available) without waiting

steal by delegation

request for entry i+1

response for entry i 

Partial

Asynchronous



Thanks!


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

