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ABP [SPAA’98]:
- Costly synchronization primitives for every pus/get

Delegation [PPoPP’13]:
- Spinning on the thief side, waiting for a response
- The owner is burdened with delegated workloads
- The owner and thieves frequently access the same 
communication variables (contention)

BWoS [OSDI’23]:
- Thieves can’t steal from the block where the owner is 

(Bad performance in specific scenarios)
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Using the block-based design [ATC’22, OSDI’23] to avoid 
contention

Partial: 
- Delegation is enabled only for the block where the owner is 
present
- When the owner advances to the next block, the delegation 

of owner’s current block is closed, and the next one is opened
- Allows for stealing from the owner’s block compared to BWoS

Asynchronous: 
- A steal operation requests for the next steal op.
- A thief requests entry i+1 and obtains entry i that is requested 
by the previous steal operation (if available) without waiting

steal by delegation

request for entry i+1

response for entry i 

Partial

Asynchronous



Thanks!
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