
Brief Announcement: Work Stealing through Partial
Asynchronous Delegation

Jiawei Wang
Huawei Dresden Research Center
Technische Universität Dresden

Germany
jiawei.wang@huawei.com

Yutao Liu
Huawei Dresden Research Center

Germany
liuyutao2@huawei.com

Ming Fu∗
Huawei Central Software Institute

China
ming.fu@huawei.com

Hermann Härtig
Technische Universität Dresden

Germany
hermann.haertig@tu-dresden.de

Haibo Chen
Huawei Central Software Institute
Shanghai Jiao Tong University

China
haibochen@sjtu.edu.cn

ABSTRACT
Work stealing is a well-established technique in multi-core systems
that aims to improve load balancing and task scheduling efficiency.
Each processing unit maintains its own task queue, and when idle, it
steals tasks from other units. Traditional work-stealing approaches
face performance bottlenecks due to costly synchronization prim-
itives and contention arising from concurrent access by both the
queue owner and thieves. The state-of-the-art solution addresses
these issues through coarse-grained synchronization; however, it
restricts stealing in specific scenarios, thereby limiting parallelism.

We introduce PadWS, a partial and asynchronous delegated
work-stealing algorithm. PadWS employs a block-based design in
which, under common cases, the queue owner and thieves work
on separate blocks, reducing metadata contention. Delegation is
partially enabled for the block in which the owner is located, al-
lowing thieves to steal from it—an approach that deviates from the
current block-based approach. Additionally, our delegation strategy
is asynchronous, which removes the need for thieves to spin-wait
after sending a request.

CCS CONCEPTS
• Computing methodologies → Concurrent algorithms.

KEYWORDS
parallel processing; scheduling; work stealing; delegation
ACM Reference Format:
Jiawei Wang, Yutao Liu, Ming Fu, Hermann Härtig, and Haibo Chen. 2024.
Brief Announcement: Work Stealing through Partial Asynchronous Delega-
tion. In Proceedings of the 36th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA ’24), June 17–21, 2024, Nantes, France. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3626183.3660261
∗Corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SPAA ’24, June 17–21, 2024, Nantes, France
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06.
https://doi.org/10.1145/3626183.3660261

1 INTRODUCTION
Work stealing [3] is a widely employed technique in various multi-
core systems. In this approach, each processing unit (e.g., thread
or core) has its own queue and serves as the owner, responsible
for pushing and popping tasks from it. When a processing unit
completes its own tasks and becomes idle, it takes on the role of a
thief, attempting to steal tasks from other queues.

1.1 ABP Work Stealing
The ABP work-stealing algorithm [2] is widely recognized and
extensively used in various industrial contexts. However, it re-
quires a significant number of synchronization primitives (marked
asP1), primarily memory barriers [7, 9], to ensure the correctness of
concurrent operations performed by the queue owner and thieves.
This requirement can create a bottleneck, impacting the overall end-
to-end performance, especially when dealing with small tasks [5,
11]. For instance, in garbage collection components.

1.2 Block-based Work Stealing
Numerous research studies [1, 4, 5, 8, 11] have focused on optimiz-
ing or proposing alternatives to reduce memory barriers in work
stealing algorithms. One notable work is the block-based work
stealing (BWoS) [11], which partitions the queue’s data and meta-
data into multiple blocks. Unlike the fine-grained synchronization
in ABP, where the owner and thieves synchronize for every task,
BWoS uses a coarse-grained synchronization strategy. Thieves are
prevented from stealing tasks from the block where the owner is
located, granting sole access to the owner and eliminating the need
for synchronization with thieves on that specific block. Synchro-
nization is only required when operations cross between blocks.
This design allows BWoS to achieve significant performance im-
provements for various scenarios.

However, in specific scenarios such as parallel task processing
systems [6] that employ a fork-join model, configuring each block
in BWoS to be too large can result in a prolonged period where
the owner, who initially possesses the root task, takes a significant
amount of time to fill the first block of its queue. During this time,
other threads are idle but unable to steal tasks, reducing parallelism
to just one core. Reducing the block size to mitigate this issue

281

https://doi.org/10.1145/3626183.3660261
https://doi.org/10.1145/3626183.3660261
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3626183.3660261&domain=pdf&date_stamp=2024-06-17


SPAA ’24, June 17–21, 2024, Nantes, France Jiawei Wang, Yutao Liu, Ming Fu, Hermann Härtig, and Haibo Chen

0 2 4 6 8 10 12
Block size (log2)

102

103

Ru
nn

in
g 

tim
e 

(m
s)

(a) fat tree workload

0 2 4 6 8 10 12
Block size (log2)

bwos
abp
padws

(b) thin tree workload

Figure 1: Running times for PadWS, BWoS, and ABP algorithms across various
tree traversal workloads, where lower values indicate better performance. In
our runtime setup, we assigned 8 queues, each to a dedicated thread. Initially,
the root task was placed in the first queue, with all other queues left empty.

0 1
Stolen percentage (%)

1

2

Th
ro

ug
hp

ut
 (o

p/
s) 1e8

bwos
pdqr
pdqs
padws
abp

(a)

padws bwos abp pdqr pdqs
0

50

100

La
te

nc
y 

(n
s)

(b)

1 2 4 816 32 64 87
#Thieves

0

2

Th
ro

ug
hp

ut
 (o

p/
s) 1e7

padws
pdqs
bwos
pdqr
abp

(c)

10 1 100 101

Stolen percentage

10 4
10 3
10 2
10 1

Av
er

ag
e

#r
et

rie
s

(d)

Figure 2: (a) Owner’s throughput under various stolen percentages. (b) Average
latency of steal operations. (c) Total throughput of steal operations with various
numbers of thieves. (d) Average number of retries of steal operations under
different stolen percentages for adws. All experiments were conducted on an
x86 machine with 88 hyper-threads.

introduces significant synchronization overhead due to frequent
and costly block advancement operations.

To support this assertion, we conducted a benchmark comparing
the performance of tree traversals with two different workloads:
the fat tree and the thin tree, as shown in Fig. 1. In the fat tree,
each node has numerous children but maintains a shallow depth,
leading to significant fluctuations in task numbers in the queue
during traversal. Consequently, for BWoS with a smaller block size
(i.e., the number of entries), frequent block advancements occur,
resulting in considerably longer running times. Conversely, the thin
tree comprises nodes with fewer children but with greater depth,
resulting in minimal fluctuations in task numbers. We observed
that for BWoS, as the block size increases, the runtime experiences
rapid escalation, consistent with the previously claimed limitation.
This emphasizes the trade-off in block size selection within BWoS
(marked as P2). Larger blocks may lead to core under-utilization in
specific scenarios, while smaller blocks can increase synchroniza-
tion overhead. Given that real-world scenarios often involve a mix
of these workloads, there is no universally suitable configuration
when employing BWoS.

1.3 Delegated Work Stealing
Another alternative for implementingwork stealing is delegation [1],
wherein the thief takes on the role of a client and sends a message
to the queue owner, requesting a task. The owner, in turn, acts as
a server and responds to the thief’s request by providing a task.
Delegation reduces the number of memory barriers for the owner,
since barriers are only needed when there are steal requests to
transfer tasks to thieves. Nevertheless, state-of-the-art delegation
approaches still encounter the following issues.
• The steal operation may occur frequently, resulting in a scenario
where the owner and thieves frequently access the same commu-
nication variables (marked as P3), causing significant impacts on
performance due to the contention [11]. To quantify the impact, as
shown in Fig. 2a, we conduct a benchmark on the state-of-the-art
delegation work stealing algorithms, namely the receiver-initiated
and sender-initiated private deques work stealing algorithms [1]
(pdqr and pdqs). Initially, we measure the owner’s throughput in a
sequential setup, where an owner pushes and pops data from its
queue without any tasks being stolen. Next, we introduce a thief
performing a steal operation and adjust the frequency of these
operations to create different steal percentages. As shown in Fig. 2a,
the throughput of pdqr and pdqs drops significantly when steal
operations occur.
• After sending a request to the owner, the thief enters a spinning
state, waiting for a response (marked as P4). This spinning can
cause additional latency in the steal operation, especially when
the owner does not respond promptly (e.g., due to preemption,
pushing/popping tasks, or running tasks). To evaluate this, we
measured the average latency of steal operations, as shown in
Fig. 2b. The results suggest that pdqr and pdqs have the highest
latency, even surpassing that of ABP, which employs extensive
memory barriers in its steal operation.
• When processes steal requests, the owner is burdened with dele-
gated workloads (e.g., copying tasks, setting/resetting communica-
tion variables), instead of allowing them to be executed in parallel
by multiple thieves. This centralized and sequential ways of pro-
cessing steal requests (marked as P5) have a considerable impact on
thieves scalability. To support this claim, we increase the number
of thieves and measure their throughput, as shown in Fig. 2c. The
experiment revealed that for pdqr and pdqs, throughput does not
scale effectively as the number of thieves increases.

2 OUR CONTRIBUTIONS
We introduce PadWS, a novel partial and asynchronous delegated
work-stealing approach to address the performance challenges
and scenario limitations found in current state-of-the-art methods.
We acknowledge that delegation effectively mitigates the issue of
barrier overhead (P1). In subsequent sections, we will present two
strategies, namely asynchronous delegation and partial delegation,
to address the aforementioned issues found in existing methods.

2.1 Asynchronous Delegation
We propose asynchronous delegation, in which a steal operation
doesn’t request a task for itself, but for the following steal operation
instead. Initially, a steal operation retrieves the task requested by

282



Brief Announcement: Work Stealing through Partial Asynchronous Delegation SPAA ’24, June 17–21, 2024, Nantes, France

the previous steal (if available). Then, the thief continues without
waiting for a response from the owner (P4). This optimization
eliminates nearly all unnecessary waiting time for thieves.

In the event that the steal operation fails to retrieve the task
because the owner hasn’t yet prepared it, the thief retries. To deter-
minewhether this failure is rare or not, we conducted an experiment
to measure the expected retry time for steal operations, as shown
in Fig. 2d. To confirm that the low number of retries is due to asyn-
chronous delegation and not by partial delegation, we created an
algorithm that uses the former only but omits the latter (adws). The
results demonstrate that the expected retry time is remarkably low,
indicating that asynchronous delegation is effective, as most steal
operations do not require retries. Additionally, Fig. 2b shows that
PadWS has the lowest average latency for steal operations among
all tested algorithms, with approximately 0.32x latency compared
to pdqr and pdqs.

2.2 Partial Delegation
Partial delegation encompasses two aspects: segmenting the queue
and fragmenting the operation.

2.2.1 Segmenting the Queue. The block-based approach [10, 11]
has recently emerged as an effective solution for reducing meta-
data contention within queues. We adopt this approach to facilitate
partial delegation. The queue is divided into blocks 1, where dele-
gation is only applied to a portion of the data located within the
owner’s block, rather than the entire queue. Once the owner com-
pletes pushing/popping tasks within a block, the owner advances
to the corresponding next block. Subsequently, the owner ends the
delegation for the current block and begins it for the new one.

In typical scenarios where the owner and thieves operate on dif-
ferent blocks, they access metadata from separate blocks, thereby
reducing potential contention for shared variables, which could im-
pact the owner’s performance (P3). Additionally, in the block where
delegation ends, thieves can steal tasks directly without the owner’s
involvement. This further reduces memory barrier overhead on the
owner’s side caused by delegation (P1) compared to state-of-the-
art delegation methods. Evidence supporting this can be found in
Fig. 2a, which shows that increasing the percentage of stolen tasks
has a negligible effect on the owner’s throughput—similar to the
behavior observed in the other block-based approach, BWoS.

Moreover, when the owner and thieves are in the same block,
thieves can still acquire tasks via asynchronous delegation. This
approach overcomes the limitations faced in BWoS, where thieves
were unable to steal from the owner’s block (P2). Consequently,
as illustrated in Fig. 1, by selecting an appropriate block size that
isn’t at the extreme ends, PadWS can consistently deliver improved
performance, achieving speedups of up to 4.7x compared to ABP.

2.2.2 Fragmenting the Operation. State-of-the-art approaches del-
egate the entire steal operation to the owner. In contrast, our ap-
proach delegates only a portion of it. Specifically, we delegate task
ownership acquisition to eliminate the costly sequentially con-
sistent barriers required for mutual exclusion by the owner and
thieves, like those in ABP. Upon receiving a steal request, the owner

1We created a heuristic function to determine the block size, defined as 2log2 (capacity)/2 ,
which offers a practical performance solution.

notifies the thief solely of the position from which to steal, rather
than the actual task. Afterward, the thief accesses the queue, copies
the task, and signals that the copying is complete.

This design offers several significant benefits, addressing P5.
First, it reduces the owner’s workload, which can improve its per-
formance. Second, it allows the owner to respond quickly to sub-
sequent steal operations, reducing the chance of spinning steal
operations. Finally, the parallel execution of task copying and the
indication of copy completion on the thieves’ side enhances the
scalability of concurrent steal operations. Consequently, as illus-
trated in Fig. 2c, PadWS demonstrates the best scalability for steal
operations among all tested algorithms. For instance, when there
were 87 thieves, PadWS delivered 3.4x performance improvements
compared to the second-best one.

3 CONCLUSION
We present PadWS, a novel design that leverages partial and asyn-
chronous delegation to overcome performance challenges and sce-
nario limitations observed in current state-of-the-art approaches.

REFERENCES
[1] Umut A Acar, Arthur Charguéraud, and Mike Rainey. 2013. Scheduling parallel

programs by work stealing with private deques. In Proceedings of the 18th ACM
SIGPLAN symposium on Principles and practice of parallel programming. 219–228.

[2] Nimar S Arora, Robert D Blumofe, and C Greg Plaxton. 2001. Thread scheduling
for multiprogrammed multiprocessors. Theory of computing systems 34, 2 (2001),
115–144.

[3] Robert D Blumofe and Charles E Leiserson. 1999. Scheduling multithreaded
computations by work stealing. Journal of the ACM (JACM) 46, 5 (1999), 720–
748.

[4] Rafael Custódio, Hervé Paulino, and Guilherme Rito. 2023. Efficient
Synchronization-Light Work Stealing. In Proceedings of the 35th ACM Symposium
on Parallelism in Algorithms and Architectures. 39–49.

[5] Michihiro Horie, Hiroshi Horii, Kazunori Ogata, and Tamiya Onodera. 2018. Bal-
anced double queues for GC work-stealing on weak memory models. In Proceed-
ings of the 2018 ACM SIGPLAN International Symposium on Memory Management.
109–119.

[6] Tsung-Wei Huang, Dian-Lun Lin, Chun-Xun Lin, and Yibo Lin. 2022. Taskflow:
A Lightweight Parallel and Heterogeneous Task Graph Computing System. IEEE
Transactions on Parallel and Distributed Systems 33, 6 (2022), 1303–1320. https:
//doi.org/10.1109/TPDS.2021.3104255

[7] Nian Liu, Binyu Zang, and Haibo Chen. 2020. No Barrier in the Road: A Com-
prehensive Study and Optimization of ARM Barriers. In Proceedings of the 25th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(San Diego, California) (PPoPP ’20). Association for Computing Machinery, New
York, NY, USA, 348–361. https://doi.org/10.1145/3332466.3374535

[8] Maged M Michael, Martin T Vechev, and Vijay A Saraswat. 2009. Idempotent
work stealing. In Proceedings of the 14th ACM SIGPLAN symposium on Principles
and practice of parallel programming. 45–54.

[9] Jonas Oberhauser, Rafael Lourenco de Lima Chehab, Diogo Behrens, Ming
Fu, Antonio Paolillo, Lilith Oberhauser, Koustubha Bhat, Yuzhong Wen, Haibo
Chen, Jaeho Kim, and Viktor Vafeiadis. 2021. VSync: Push-Button Verification
and Optimization for Synchronization Primitives on Weak Memory Models.
In Proceedings of the 26th ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (Virtual, USA) (ASPLOS
2021). Association for Computing Machinery, New York, NY, USA, 530–545.
https://doi.org/10.1145/3445814.3446748

[10] Jiawei Wang, Diogo Behrens, Ming Fu, Lilith Oberhauser, Jonas Oberhauser,
Jitang Lei, Geng Chen, Hermann Härtig, and Haibo Chen. 2022. BBQ: A Block-
based Bounded Queue for Exchanging Data and Profiling. In 2022 USENIX Annual
Technical Conference (USENIX ATC 22). USENIX Association, Carlsbad, CA, 249–
262. https://www.usenix.org/conference/atc22/presentation/wang-jiawei

[11] JiaweiWang, Bohdan Trach, Ming Fu, Diogo Behrens, Jonathan Schwender, Yutao
Liu, Jitang Lei, Viktor Vafeiadis, Hermann Härtig, and Haibo Chen. 2023. BWoS:
Formally Verified Block-based Work Stealing for Parallel Processing. In 17th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 23).
USENIX Association, Boston, MA, 833–850. https://www.usenix.org/conference/
osdi23/presentation/wang-jiawei

283

https://doi.org/10.1109/TPDS.2021.3104255
https://doi.org/10.1109/TPDS.2021.3104255
https://doi.org/10.1145/3332466.3374535
https://doi.org/10.1145/3445814.3446748
https://www.usenix.org/conference/atc22/presentation/wang-jiawei
https://www.usenix.org/conference/osdi23/presentation/wang-jiawei
https://www.usenix.org/conference/osdi23/presentation/wang-jiawei

	Abstract
	1 Introduction
	1.1 ABP Work Stealing
	1.2 Block-based Work Stealing
	1.3 Delegated Work Stealing

	2 Our Contributions
	2.1 Asynchronous Delegation
	2.2 Partial Delegation

	3 Conclusion
	References



