
AutoGR: Automated Geo-Replication with Fast System
Performance and Preserved Application Semantics

Jiawei Wang1, Cheng Li1, Kai Ma1, Jingze Huo1, Feng Yan2, Xinyu Feng3, Yinlong Xu1

x

Background

…

x

Motivation

 - Geo-Replication as a
major solution to cope with
ever-growing user base for
Internet services.

 Strong consistency introduces high delay to user responses.

Related Work

Eventual

Strong eventual

Casual

Casual+Parallel SnapshotStrong

SnapshotSerializable
Strong Weak

Restriction-based fine-grained consistency model

Non-replicated,
serializable application

High-level property
(Invariant, pre/post—condition)

(Provided by the programmer)

Geo-replicated version

Time-consuming

and error-prone!

Observation

(a) Violating execution 1

³ ´

³ ´

³ ´

³ ´

(b) Violating execution 2 (c) Correct execution.

Figure 3: Three possible executions of geo-replicated services without coordination. Ellipses represent states. Dashed boxes
represent user requests, while the dotted boxes and gray boxes indicate their path conditions and side e�ects, respectively.
The serial order established by solid arrows corresponds to the execution of generating and applying side e�ects at a site. The
dashed arrows indicate the propagation and replication of side e�ects from a site to another.

update queries such as INSERT, UPDATE, and DELETE. In the end, it
commits all side e�ects and makes the changes persistent.

3.2 A motivating example
Next, we use a simpli�ed banking system as amotivating example to
explain the design principles behind R��� for identifying con�icting
operations and generating ordering restrictions. The system has
three operations, namely, Withdraw, Deposit, and UpdateCustomer.
The pseudocode ofWithdraw is shown in Figure 2, and we omit the
other two in the interest of space. Figure 3 gives three concurrent
executions of these operations with no coordination placed.

Figure 3a illustrates an example of replicating non-commutative
side e�ects. Two concurrent requests of the UpdateCustomer oper-
ation are submitted to two data centers to change the location of
“Bob” from “NYC” to “LON” and “FRA,” respectively. When the side
e�ects of the two requests were replicated across the two sites in
di�erent orders, the resulting states would di�er. This violates a
critical system property called state convergence [43]. To preclude
this kind of anomalies, we need to check the commutativity of side
e�ects produced by operations in a pair-wise fashion and add a
restriction to coordinate the generation of any pairs of side e�ects
that do not commute.

Figure 3b shows an example using the side e�ects of two concur-
rent Withdraw requests. Although the two side e�ects commute,
this execution is still invalid. This is because the path conditions
established at the primary replica could be invalidated by the con-
current execution of other operations. In this example, the path
condition for the side e�ect of a successful withdrawal would be
balance � money � 0. Clearly, the condition holds in the primary
replica of the two simultaneousWithdraw requests. Nevertheless,
it becomes false when the side e�ect reaches the other (remote) site.
Application of the side e�ects of both requests results in a negative
balance value, violating the expected invariant. To preclude this
type of violations, we need to derive a semantics check to determine
if we should add a restriction between the pair of side e�ects that
are not invariant preserving.

Unlike the above two harmful concurrent executions, Figure 3c
represents a correct one, where aWithdraw can run concurrently
with a Deposit, for which the reason is two-fold. First, their side
e�ects are commutative. Second, the conditions corresponding to
the two identi�ed side e�ects are compatible, i.e., the side e�ect of
Deposits will not invalidate the condition of successful Withdraws,
and vice versa. This indicates that no coordination should be placed
to restrict the generation and replication of the two side e�ects.

3.3 Challenges and opportunities
Inspired by the examples shown in Figure 3, the correctness require-
ment implies that the geo-replicated version should not generate
more states than the original, non-replicated version. Therefore,
we may need to output a restriction over a pair of side e�ects if
they meet either of the following two conditions: a) they are non-
commutative side e�ects and may cause replicas to terminate in a
divergent state that cannot be generated in any serializable order;
and b) the condition leading to one of the two side e�ects might no
longer hold when seeing the other side e�ect.

To detect the two cases without the programmer’s inputs, we
need to “understand” the operations solely from the source code
to infer side e�ects and invariants. First, due to the code struc-
ture of the target applications, for inferring side e�ects, it is suf-
�cient to understand the speci�cations of SQL queries and the
changes induced on arguments that instantiate the queries. Second,
application-speci�c invariants are implicitly encoded into the con-
ditional checks taken at each branch along a control �ow path of
each transaction. As a result, to automatically infer the invariants,
we need to extract and understand the semantics of the path condi-
tion leading to a particular side e�ect. This step requires traversing
all distinct code paths. It may also involve the understanding of
the semantics of SELECT queries, since the variables in the branch
conditional check formula may be fetched from the database.

Identifying con�icting pairs of side e�ects requires us to make
the gathered side e�ects and path conditions veri�able. Here, we
translate them into the code of Z3 [27], and then ask Z3 to check
the commutativity of the side e�ects and the compatibility of their

Application-specific invariants are already implicitly reflected in the programs.

is called state convergence, i.e., when beginning at the same ini-
tial state, after applying the same set of side e�ects (possibly in
a di�erent order), all sites reach the same �nal state. Besides, the
second property is called invariant preservation, which says that at
each site, every state transition triggered by applying a side e�ect
should not violate application-speci�c invariants de�ned by devel-
opers, assuming the initial state preserving those invariants (We
call invariant-preserving state valid).

For geo-replicating an application, the key to making the best
use of the restriction-based �ne-grained consistency models is to
identify all pairs of con�icting operations, each of which will be
con�ned by a restriction. A���GR is built atop of this line of work.

2.3 Tool support and limitations
Some works have formulated a set of principles to guide developers
to identify restrictions [17, 20, 32, 36]. However, most of them
require extensive domain expertise and manual e�orts to reason
about all possible concurrent executions of user requests. Such a
manual reasoning process is time-consuming and error-prone.

To relieve the burden imposed on programmers, many attempts
have been made towards o�ering automated tools for completing
this task [20, 34]. SIEVE computes the weakest preconditions for
each side e�ect, which summarizes when they cannot be executed
without coordination [34]. This solution is conservative, as it re-
quires coordinating the generation and replication of all problematic
side e�ects, whose weakest preconditions are evaluated to False.
To improve the limitation of SIEVE, Indigo performs static analysis
of operation post-conditions against invariants to infer the pairs
of concurrent operations that may lead to invariant violations [20].
One of the major drawbacks of this line of work is that they all
require programmers to write correct and su�cient speci�cations
about application-speci�c invariants and pre- or post-conditions of
their code in logic formulas. Another major drawback is that they
assume that the speci�cations written by programmers are always
correct and su�cient. Incomplete or too weak invariants can cause
incorrect system behaviors, while too strong or unnecessary invari-
ants lead to performance penalty. As a consequence, it’s desired to
completely release this burden from programmers by not requiring
them to specify application-speci�c invariants.

2.4 The Z3 theorem prover
Z3 is a state-of-the-art theorem prover developed by Microsoft Re-
search [27], and has been widely used to check the satis�ability
of logical formulas [37, 49]. Those formulas are input constraints
given by users and can be written as a Boolean combination of
atomic formulas, which are de�ned over a rich set of theories sup-
ported by Z3, such as integer and real arithmetic, bit-vectors, arrays,
quanti�ers, and functions. Given a formula in the �rst-order logic
calculus with free variables, Z3 searches a set of assignments to
its variables, which satisfy that formula, and reports unsat, if the
search fails. We can take advantage of the rich set of theories in
Z3 to model the changes to the shared state of target applications,
while using the solver to reason about the consistency constraints
encoded in the original code.

void withdraw(Connection conn, String custName,
double amount) throws Exception {

PreparedStatement stmt = conn.prepareStatement(
"SELECT ⇤ FROM ACCOUNTS WHERE name = ?");

stmt.setString(1, custName);
ResultSet rs = stmt.executeQuery();
if (rs.next() == false) throw new Exception(“Invalid account”);
long custId = rs.getLong(1);
stmt = conn.prepareStatement("

SELECT bal FROM SAVINGS WHERE custid = ?");
stmt.setLong(1, custId);
rs = stmt.executeQuery();
if (rs.next() == false) throw new Exception(“No saving account”);
double balance = rs.getDouble(1) � amount;
if (balance < 0) throw new Exception(“Negative balance”);
stmt = conn.prepareStatement(

"UPDATE SAVINGS SET bal =? WHERE custid =?");
stmt.setDouble(1, balance); stmt.setLong(2, custId);
stmt.executeUpdate();
conn.commit();

}

Figure 2: Pseudocode of aWithdraw transaction

3 OVERVIEW
The goal of A���GR is to develop an end-to-end framework to auto-
matically deploy non-replicated serializable code in a geo-replicated
setting to explore performance bene�ts while maintaining the cor-
rect application semantics. The performance gains enabled by A��
��GR come from two parts. First, A���GR leverages on an existing
geo-replication framework O������ that enables �ne-grained co-
ordination over pairs of operations that produce con�icting side
e�ects. Second, A���GR integrates O������ with a static analyzer
R��� to identify a minimal set of ordering restrictions that must
be ensured so that the intended semantics of the corresponding
geo-replication applications are not violated.

3.1 Target applications
We target and transition classic three-tier non-replicated applica-
tions [1, 10]. One of such applications spans its logic across client,
application server, and database tiers, and assumes a single-copy
database (often a relational database). The application server con-
tains the functional business logic, de�ned as a set of transactions.
Each transaction takes requests from clients as inputs, and intellec-
tually manipulates the state stored in the database via SQL queries.
These queries are statically de�ned as parameterized functions, and
instantiated by user inputs at runtime.

Here, we brie�y elaborate on how the applications work. When
a transaction starts, it takes inputs from users (e.g., the key to the
target objects), and executes a SELECT query to retrieve shared
objects from the backend relational database. Then, it performs
certain condition checks to determine the side e�ects. For instance,
in Figure 2, theWithdraw transaction checks the existence of the
target account and the balance in that account fetched from the
database is greater than or equal to the amount supplied by users.
Depending on the checking results, the execution of that transaction
can go to di�erent branches, which leads to di�erent side e�ects. For
instance, if the check fails, then theWithdraw transaction generates
no side e�ects. Otherwise, it may perform changes to the shared
objects andwrite those side e�ects back to the database by executing

AutoGR

 A
pp

C

od
e

Da
ta

ba
se

Sc

he
m

a

APP Servers

 Analyzer

 (Rigi)

Restrictions

static

Cross-site

Coordination

Service
Causally Consistent

Geo-Replicated Store

runtime
AP

US EU

AP

US EU

AutoGR

 A
pp

C

od
e

Da
ta

ba
se

Sc

he
m

a

APP Servers

 Analyzer

 (Rigi)

Restrictions

static

Cross-site

Coordination

Service
Causally Consistent

Geo-Replicated Store

runtime
AP

US EU

AP

US EU

The static analyzer Rigi identifies a minimal
set of ordering restrictions that must be
ensured so that the intended semantics
are not violated.

 A
pp

C

od
e

Da
ta

ba
se

Sc

he
m

a

APP Servers

 Analyzer

 (Rigi)

Restrictions

static

Cross-site

Coordination

Service
Causally Consistent

Geo-Replicated Store

runtime
AP

US EU

AP

US EU

AutoGR

 A
pp

C

od
e

Da
ta

ba
se

Sc

he
m

a

APP Servers

 Analyzer

 (Rigi)

Restrictions

static

Cross-site

Coordination

Service
Causally Consistent

Geo-Replicated Store

runtime
AP

US EU

AP

US EU

The static analyzer Rigi identifies a minimal
set of ordering restrictions that must be
ensured so that the intended semantics
are not violated.

AutoGR leverages on an existing geo-replication
framework Olisipo that enables fine-grained co-
ordination over pairs of operations that produce
conflicting side effects.

AutoGR —— Rigi

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

AutoGR —— Rigi

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

AutoGR —— Rigi

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

AutoGR —— Rigi

Code

Translator

SQL

Translator

COLLECTOR

SQL

query

App

Code

DB

Schema

 {<side effect,

path cond.>}

DB

Spec.

Z3PY Code

DBLIB

CHECKER

Re
st

ric
tio

nsZ3

RulesAxioms

AutoGR —— Rigi —— DBLib

Z3Py
 - IntSort, StringSort, BoolSort, RealSort, …
 - Extensional array
 - ForAll, Implies, <=, ==, …

SQL query interface
 - Basic: select, update, …
 - Advanced: comparison, inner join,
 aggregation, …

Table definition interface
 - Primary key, foreign key
 - Key with multiple fields

Table 1: Speci�cations in Z3P� automatically derived for database APIs which cover a substantial range of SQL features.

Category Description Example SQL statement Z3P� speci�cation

Basic
features

Data
model

CREATE TABLE RSVN (
R_C_ID BIGINT NOT NULL ,
R_F_ID BIGINT NOT NULL ,
R_SEAT BIGINT NOT NULL , ...

PRIMARY KEY (R_C_ID ,R_F_ID))

K_RSVN = Datatype (...)
K_RSVN.declare (...,(R_C_ID , R_F_ID))
V_RSVN = Datatype (...)
V_RSVN.declare (...)
TABLE_RSVN = Array (..., K_RSVN , V_RSVN)

Basic
queries

SELECT NAME FROM ACCOUNTS
WHERE CUSTID = cid

V_ACCOUNTS.NAME(Select(
TABLE_ACCOUNTS , K_ACCOUNTS.new(cid)))

INSERT INTO USERS
(ID ,FIRSTNAME ,LASTNAME ,...)

VALUES (uid ,fname ,lname ,...)

Store(TABLE_USERS , K_USERS.new(uid),
V_USERS.new(uid , fname , lname , ...))

UPDATE CUSTOMER
SET C_BASE_AP_ID = aid ,
LOCATION = loc
WHERE C_ID = cid

Store(TABLE_CUSTMER , T_CUSTMER.new(cid),
V_CUSTMER.new(V_CUSTMER.BALANCE(
Select(TABLE_CUSTMER ,T_CUSTMER.new(cid)))
,aid ,...,loc ,...))

DELETE FROM ACCOUNTS
WHERE CUSTID = cid

Store(TABLE_ACCOUNTS ,
K_ACCOUNTS.new(cid), V_ACCOUNTS.nil)

Advanced
features

Comparison
operator

SELECT ID FROM ITEMS
WHERE ID=id AND END_DATE <= end_date

V_ITEMS.END_DATE(Select(
TABLE_ITEMS ,K_ITEMS.new(id))) <= end_date

Inner join

SELECT BALANCE ,F_SEATS_LEFT ,
R_ID , R_SEAT , R_PRICE

FROM T_CUSTOMER ,T_FLIGHT ,T_RSVN
WHERE C_ID=cid AND C_ID=R_C_ID

AND F_ID=fid AND F_ID=R_F_ID

V_CUSTOMER.BALANCE(Select(T_CUSTOMER ,K_CUSTOMER.new(cid)))
V_FLIGHT.F_SEATS_LEFT(Select(T_FLIGHT ,K_FLIGHT.new(fid)))
V_RSVN.R_ID(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_SEAT(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_PRICE(Select(T_RSVN ,K_RSVN.new(cid ,fid)))

Aggregation

SELECT USER_ID , BID
FROM BIDS
WHERE ITEM_ID = iid

ORDER BY bid
DESC LIMIT 1

ForAll ([k_bids_1 ,k_bids_2], Implies(And(V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_1)) == iid , V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_2)) == iid , V_BIDS.USER_ID(
Select(TABLE_BIDS ,k_bids_2)) == winner),V_BIDS.BID(
Select(TABLE_BIDS ,k_bids_1)) <= V_BIDS.BID(Select(
TABLE_BIDS ,k_bids_2))))

- amount >= 0”, where userId is a user’s customer id and bal repre-
sents the balance attribute she wants to retrieve. AB .=4GC () == false
is a commonly used conditional check to decide whether a partic-
ular record exists or not. In this case, R��� �rst determines which
SELECT query AB refers to, and then generates a Z3P� formula “ta-
ble_[name](pkey) == nil”, where =0<4 and ?:4~ stand for the
corresponding table name and primary key in that query.

In the end, the output of C�������� is a set of tuples, each of
which consists of > , pcond, and arg, standing for the side e�ect, path
condition, and arguments, respectively. Examples are in Table 2.

4.3 Checking rules
As depicted in Figure 4, C������ takes the database speci�cations
and the ho, pcond, argi tuples generated by C�������� as input,
and performs two checks, namely the commutativity and semantics
check, to �gure out the con�icting side e�ect pairs.
Commutativity check. For two operations D1 and D2, assume
their side e�ects and arguments are h>1, arg1i and h>2, arg2i, re-
spectively. The commutativity check is relatively straightforward
and well studied in the literature [25, 55], and concentrates only
on side e�ects. Here, we check, for any reachable state B of a target
application, whether the following assertion is satis�ed:

>1 (>2 (B, arg2), arg1) = >2 (>1 (B, arg1), arg2)
This assertion says that two side e�ects are commutative if ap-

plying them against the same initial state in di�erent orders leads
to the same �nal state. Take the problematic concurrent execution
shown in Figure 3a, for example. The side e�ects of UpdateCustomer
are not self-commutative; thus, R��� adds a restriction over any pair
of UpdateCustomer operations.

Additionally, for a transaction containing complex loops with
non-independent iterations, it is hard for R��� to infer their side
e�ects. In this case, we resort to a conservative but safe strategy,

where the corresponding transaction will be marked as con�icting
with all other side e�ects that have write-write con�icts with it.
Semantics check.To ensure the transitioning from a non-replicated
serializable code into its geo-replicated version is correct, we per-
form semantics check by asserting for any concurrent execution
of two operations D1 and D2, the application of their side e�ects
against a valid state in a serial order will not lead to an unreachable
state in the non-replicated version. Formally, let >1 be the side e�ect
of D1, >2 and > 02 be the side e�ect of D2 generated when D2 misses or
sees >1, we should assert that the two operations D1 and D2 can be
executed without restriction if (1) >2 is a no-op side e�ect (i.e., miss-
ing the side e�ect of D1, D2 produces no side e�ect); or (2) >2 = > 02
(i.e., D2 produces the same side e�ect regardless of the existence
of D1). Finally, we translate the above principle into checking the
following formula:

For any reachable state B , (B ,arg2) satisfying ?2>=32
) (>1(B , arg1), arg2) satis�es ?2>=32.

We use two following counter-examples to illustrate this idea.
First, as shown in Figure 3b, imagine we run two withdraws simul-
taneously against an initial state (balance is 100) where they want
to deduct 50 (denoted as D1) and 60 (denoted as D2) from the shared
account, respectively. If D1 sees the side e�ect of D2 (the remaining
balance is 40), then the side e�ect of D1 will never be generated. In
this case, without ordering the execution of these two operations
may lead to violations in the intended application semantics that
balance should never be negative. Thus, R��� automatically adds a
restriction over D1 and D2.

Take RUBiS as another counter-example, placebid is to bid on an
item when the corresponding auction is still open, while closeAuc-
tion terminates an auction and declares the winner. When placebid
did not see the side e�ects of closeAuction, it would continue to bid
for an auction that was already closed. As closeAuction may miss

Table 1: Speci�cations in Z3P� automatically derived for database APIs which cover a substantial range of SQL features.

Category Description Example SQL statement Z3P� speci�cation

Basic
features

Data
model

CREATE TABLE RSVN (
R_C_ID BIGINT NOT NULL ,
R_F_ID BIGINT NOT NULL ,
R_SEAT BIGINT NOT NULL , ...

PRIMARY KEY (R_C_ID ,R_F_ID))

K_RSVN = Datatype (...)
K_RSVN.declare (...,(R_C_ID , R_F_ID))
V_RSVN = Datatype (...)
V_RSVN.declare (...)
TABLE_RSVN = Array (..., K_RSVN , V_RSVN)

Basic
queries

SELECT NAME FROM ACCOUNTS
WHERE CUSTID = cid

V_ACCOUNTS.NAME(Select(
TABLE_ACCOUNTS , K_ACCOUNTS.new(cid)))

INSERT INTO USERS
(ID ,FIRSTNAME ,LASTNAME ,...)

VALUES (uid ,fname ,lname ,...)

Store(TABLE_USERS , K_USERS.new(uid),
V_USERS.new(uid , fname , lname , ...))

UPDATE CUSTOMER
SET C_BASE_AP_ID = aid ,
LOCATION = loc
WHERE C_ID = cid

Store(TABLE_CUSTMER , T_CUSTMER.new(cid),
V_CUSTMER.new(V_CUSTMER.BALANCE(
Select(TABLE_CUSTMER ,T_CUSTMER.new(cid)))
,aid ,...,loc ,...))

DELETE FROM ACCOUNTS
WHERE CUSTID = cid

Store(TABLE_ACCOUNTS ,
K_ACCOUNTS.new(cid), V_ACCOUNTS.nil)

Advanced
features

Comparison
operator

SELECT ID FROM ITEMS
WHERE ID=id AND END_DATE <= end_date

V_ITEMS.END_DATE(Select(
TABLE_ITEMS ,K_ITEMS.new(id))) <= end_date

Inner join

SELECT BALANCE ,F_SEATS_LEFT ,
R_ID , R_SEAT , R_PRICE

FROM T_CUSTOMER ,T_FLIGHT ,T_RSVN
WHERE C_ID=cid AND C_ID=R_C_ID

AND F_ID=fid AND F_ID=R_F_ID

V_CUSTOMER.BALANCE(Select(T_CUSTOMER ,K_CUSTOMER.new(cid)))
V_FLIGHT.F_SEATS_LEFT(Select(T_FLIGHT ,K_FLIGHT.new(fid)))
V_RSVN.R_ID(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_SEAT(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_PRICE(Select(T_RSVN ,K_RSVN.new(cid ,fid)))

Aggregation

SELECT USER_ID , BID
FROM BIDS
WHERE ITEM_ID = iid

ORDER BY bid
DESC LIMIT 1

ForAll ([k_bids_1 ,k_bids_2], Implies(And(V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_1)) == iid , V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_2)) == iid , V_BIDS.USER_ID(
Select(TABLE_BIDS ,k_bids_2)) == winner),V_BIDS.BID(
Select(TABLE_BIDS ,k_bids_1)) <= V_BIDS.BID(Select(
TABLE_BIDS ,k_bids_2))))

- amount >= 0”, where userId is a user’s customer id and bal repre-
sents the balance attribute she wants to retrieve. AB .=4GC () == false
is a commonly used conditional check to decide whether a partic-
ular record exists or not. In this case, R��� �rst determines which
SELECT query AB refers to, and then generates a Z3P� formula “ta-
ble_[name](pkey) == nil”, where =0<4 and ?:4~ stand for the
corresponding table name and primary key in that query.

In the end, the output of C�������� is a set of tuples, each of
which consists of > , pcond, and arg, standing for the side e�ect, path
condition, and arguments, respectively. Examples are in Table 2.

4.3 Checking rules
As depicted in Figure 4, C������ takes the database speci�cations
and the ho, pcond, argi tuples generated by C�������� as input,
and performs two checks, namely the commutativity and semantics
check, to �gure out the con�icting side e�ect pairs.
Commutativity check. For two operations D1 and D2, assume
their side e�ects and arguments are h>1, arg1i and h>2, arg2i, re-
spectively. The commutativity check is relatively straightforward
and well studied in the literature [25, 55], and concentrates only
on side e�ects. Here, we check, for any reachable state B of a target
application, whether the following assertion is satis�ed:

>1 (>2 (B, arg2), arg1) = >2 (>1 (B, arg1), arg2)
This assertion says that two side e�ects are commutative if ap-

plying them against the same initial state in di�erent orders leads
to the same �nal state. Take the problematic concurrent execution
shown in Figure 3a, for example. The side e�ects of UpdateCustomer
are not self-commutative; thus, R��� adds a restriction over any pair
of UpdateCustomer operations.

Additionally, for a transaction containing complex loops with
non-independent iterations, it is hard for R��� to infer their side
e�ects. In this case, we resort to a conservative but safe strategy,

where the corresponding transaction will be marked as con�icting
with all other side e�ects that have write-write con�icts with it.
Semantics check.To ensure the transitioning from a non-replicated
serializable code into its geo-replicated version is correct, we per-
form semantics check by asserting for any concurrent execution
of two operations D1 and D2, the application of their side e�ects
against a valid state in a serial order will not lead to an unreachable
state in the non-replicated version. Formally, let >1 be the side e�ect
of D1, >2 and > 02 be the side e�ect of D2 generated when D2 misses or
sees >1, we should assert that the two operations D1 and D2 can be
executed without restriction if (1) >2 is a no-op side e�ect (i.e., miss-
ing the side e�ect of D1, D2 produces no side e�ect); or (2) >2 = > 02
(i.e., D2 produces the same side e�ect regardless of the existence
of D1). Finally, we translate the above principle into checking the
following formula:

For any reachable state B , (B ,arg2) satisfying ?2>=32
) (>1(B , arg1), arg2) satis�es ?2>=32.

We use two following counter-examples to illustrate this idea.
First, as shown in Figure 3b, imagine we run two withdraws simul-
taneously against an initial state (balance is 100) where they want
to deduct 50 (denoted as D1) and 60 (denoted as D2) from the shared
account, respectively. If D1 sees the side e�ect of D2 (the remaining
balance is 40), then the side e�ect of D1 will never be generated. In
this case, without ordering the execution of these two operations
may lead to violations in the intended application semantics that
balance should never be negative. Thus, R��� automatically adds a
restriction over D1 and D2.

Take RUBiS as another counter-example, placebid is to bid on an
item when the corresponding auction is still open, while closeAuc-
tion terminates an auction and declares the winner. When placebid
did not see the side e�ects of closeAuction, it would continue to bid
for an auction that was already closed. As closeAuction may miss

Table 1: Speci�cations in Z3P� automatically derived for database APIs which cover a substantial range of SQL features.

Category Description Example SQL statement Z3P� speci�cation

Basic
features

Data
model

CREATE TABLE RSVN (
R_C_ID BIGINT NOT NULL ,
R_F_ID BIGINT NOT NULL ,
R_SEAT BIGINT NOT NULL , ...

PRIMARY KEY (R_C_ID ,R_F_ID))

K_RSVN = Datatype (...)
K_RSVN.declare (...,(R_C_ID , R_F_ID))
V_RSVN = Datatype (...)
V_RSVN.declare (...)
TABLE_RSVN = Array (..., K_RSVN , V_RSVN)

Basic
queries

SELECT NAME FROM ACCOUNTS
WHERE CUSTID = cid

V_ACCOUNTS.NAME(Select(
TABLE_ACCOUNTS , K_ACCOUNTS.new(cid)))

INSERT INTO USERS
(ID ,FIRSTNAME ,LASTNAME ,...)

VALUES (uid ,fname ,lname ,...)

Store(TABLE_USERS , K_USERS.new(uid),
V_USERS.new(uid , fname , lname , ...))

UPDATE CUSTOMER
SET C_BASE_AP_ID = aid ,
LOCATION = loc
WHERE C_ID = cid

Store(TABLE_CUSTMER , T_CUSTMER.new(cid),
V_CUSTMER.new(V_CUSTMER.BALANCE(
Select(TABLE_CUSTMER ,T_CUSTMER.new(cid)))
,aid ,...,loc ,...))

DELETE FROM ACCOUNTS
WHERE CUSTID = cid

Store(TABLE_ACCOUNTS ,
K_ACCOUNTS.new(cid), V_ACCOUNTS.nil)

Advanced
features

Comparison
operator

SELECT ID FROM ITEMS
WHERE ID=id AND END_DATE <= end_date

V_ITEMS.END_DATE(Select(
TABLE_ITEMS ,K_ITEMS.new(id))) <= end_date

Inner join

SELECT BALANCE ,F_SEATS_LEFT ,
R_ID , R_SEAT , R_PRICE

FROM T_CUSTOMER ,T_FLIGHT ,T_RSVN
WHERE C_ID=cid AND C_ID=R_C_ID

AND F_ID=fid AND F_ID=R_F_ID

V_CUSTOMER.BALANCE(Select(T_CUSTOMER ,K_CUSTOMER.new(cid)))
V_FLIGHT.F_SEATS_LEFT(Select(T_FLIGHT ,K_FLIGHT.new(fid)))
V_RSVN.R_ID(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_SEAT(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_PRICE(Select(T_RSVN ,K_RSVN.new(cid ,fid)))

Aggregation

SELECT USER_ID , BID
FROM BIDS
WHERE ITEM_ID = iid

ORDER BY bid
DESC LIMIT 1

ForAll ([k_bids_1 ,k_bids_2], Implies(And(V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_1)) == iid , V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_2)) == iid , V_BIDS.USER_ID(
Select(TABLE_BIDS ,k_bids_2)) == winner),V_BIDS.BID(
Select(TABLE_BIDS ,k_bids_1)) <= V_BIDS.BID(Select(
TABLE_BIDS ,k_bids_2))))

- amount >= 0”, where userId is a user’s customer id and bal repre-
sents the balance attribute she wants to retrieve. AB .=4GC () == false
is a commonly used conditional check to decide whether a partic-
ular record exists or not. In this case, R��� �rst determines which
SELECT query AB refers to, and then generates a Z3P� formula “ta-
ble_[name](pkey) == nil”, where =0<4 and ?:4~ stand for the
corresponding table name and primary key in that query.

In the end, the output of C�������� is a set of tuples, each of
which consists of > , pcond, and arg, standing for the side e�ect, path
condition, and arguments, respectively. Examples are in Table 2.

4.3 Checking rules
As depicted in Figure 4, C������ takes the database speci�cations
and the ho, pcond, argi tuples generated by C�������� as input,
and performs two checks, namely the commutativity and semantics
check, to �gure out the con�icting side e�ect pairs.
Commutativity check. For two operations D1 and D2, assume
their side e�ects and arguments are h>1, arg1i and h>2, arg2i, re-
spectively. The commutativity check is relatively straightforward
and well studied in the literature [25, 55], and concentrates only
on side e�ects. Here, we check, for any reachable state B of a target
application, whether the following assertion is satis�ed:

>1 (>2 (B, arg2), arg1) = >2 (>1 (B, arg1), arg2)
This assertion says that two side e�ects are commutative if ap-

plying them against the same initial state in di�erent orders leads
to the same �nal state. Take the problematic concurrent execution
shown in Figure 3a, for example. The side e�ects of UpdateCustomer
are not self-commutative; thus, R��� adds a restriction over any pair
of UpdateCustomer operations.

Additionally, for a transaction containing complex loops with
non-independent iterations, it is hard for R��� to infer their side
e�ects. In this case, we resort to a conservative but safe strategy,

where the corresponding transaction will be marked as con�icting
with all other side e�ects that have write-write con�icts with it.
Semantics check.To ensure the transitioning from a non-replicated
serializable code into its geo-replicated version is correct, we per-
form semantics check by asserting for any concurrent execution
of two operations D1 and D2, the application of their side e�ects
against a valid state in a serial order will not lead to an unreachable
state in the non-replicated version. Formally, let >1 be the side e�ect
of D1, >2 and > 02 be the side e�ect of D2 generated when D2 misses or
sees >1, we should assert that the two operations D1 and D2 can be
executed without restriction if (1) >2 is a no-op side e�ect (i.e., miss-
ing the side e�ect of D1, D2 produces no side e�ect); or (2) >2 = > 02
(i.e., D2 produces the same side e�ect regardless of the existence
of D1). Finally, we translate the above principle into checking the
following formula:

For any reachable state B , (B ,arg2) satisfying ?2>=32
) (>1(B , arg1), arg2) satis�es ?2>=32.

We use two following counter-examples to illustrate this idea.
First, as shown in Figure 3b, imagine we run two withdraws simul-
taneously against an initial state (balance is 100) where they want
to deduct 50 (denoted as D1) and 60 (denoted as D2) from the shared
account, respectively. If D1 sees the side e�ect of D2 (the remaining
balance is 40), then the side e�ect of D1 will never be generated. In
this case, without ordering the execution of these two operations
may lead to violations in the intended application semantics that
balance should never be negative. Thus, R��� automatically adds a
restriction over D1 and D2.

Take RUBiS as another counter-example, placebid is to bid on an
item when the corresponding auction is still open, while closeAuc-
tion terminates an auction and declares the winner. When placebid
did not see the side e�ects of closeAuction, it would continue to bid
for an auction that was already closed. As closeAuction may miss

Table 1: Speci�cations in Z3P� automatically derived for database APIs which cover a substantial range of SQL features.

Category Description Example SQL statement Z3P� speci�cation

Basic
features

Data
model

CREATE TABLE RSVN (
R_C_ID BIGINT NOT NULL ,
R_F_ID BIGINT NOT NULL ,
R_SEAT BIGINT NOT NULL , ...

PRIMARY KEY (R_C_ID ,R_F_ID))

K_RSVN = Datatype (...)
K_RSVN.declare (...,(R_C_ID , R_F_ID))
V_RSVN = Datatype (...)
V_RSVN.declare (...)
TABLE_RSVN = Array (..., K_RSVN , V_RSVN)

Basic
queries

SELECT NAME FROM ACCOUNTS
WHERE CUSTID = cid

V_ACCOUNTS.NAME(Select(
TABLE_ACCOUNTS , K_ACCOUNTS.new(cid)))

INSERT INTO USERS
(ID ,FIRSTNAME ,LASTNAME ,...)

VALUES (uid ,fname ,lname ,...)

Store(TABLE_USERS , K_USERS.new(uid),
V_USERS.new(uid , fname , lname , ...))

UPDATE CUSTOMER
SET C_BASE_AP_ID = aid ,
LOCATION = loc
WHERE C_ID = cid

Store(TABLE_CUSTMER , T_CUSTMER.new(cid),
V_CUSTMER.new(V_CUSTMER.BALANCE(
Select(TABLE_CUSTMER ,T_CUSTMER.new(cid)))
,aid ,...,loc ,...))

DELETE FROM ACCOUNTS
WHERE CUSTID = cid

Store(TABLE_ACCOUNTS ,
K_ACCOUNTS.new(cid), V_ACCOUNTS.nil)

Advanced
features

Comparison
operator

SELECT ID FROM ITEMS
WHERE ID=id AND END_DATE <= end_date

V_ITEMS.END_DATE(Select(
TABLE_ITEMS ,K_ITEMS.new(id))) <= end_date

Inner join

SELECT BALANCE ,F_SEATS_LEFT ,
R_ID , R_SEAT , R_PRICE

FROM T_CUSTOMER ,T_FLIGHT ,T_RSVN
WHERE C_ID=cid AND C_ID=R_C_ID

AND F_ID=fid AND F_ID=R_F_ID

V_CUSTOMER.BALANCE(Select(T_CUSTOMER ,K_CUSTOMER.new(cid)))
V_FLIGHT.F_SEATS_LEFT(Select(T_FLIGHT ,K_FLIGHT.new(fid)))
V_RSVN.R_ID(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_SEAT(Select(T_RSVN ,K_RSVN.new(cid ,fid)))
V_RSVN.R_PRICE(Select(T_RSVN ,K_RSVN.new(cid ,fid)))

Aggregation

SELECT USER_ID , BID
FROM BIDS
WHERE ITEM_ID = iid

ORDER BY bid
DESC LIMIT 1

ForAll ([k_bids_1 ,k_bids_2], Implies(And(V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_1)) == iid , V_BIDS.ITEM_ID(
Select(TABLE_BIDS ,k_bids_2)) == iid , V_BIDS.USER_ID(
Select(TABLE_BIDS ,k_bids_2)) == winner),V_BIDS.BID(
Select(TABLE_BIDS ,k_bids_1)) <= V_BIDS.BID(Select(
TABLE_BIDS ,k_bids_2))))

- amount >= 0”, where userId is a user’s customer id and bal repre-
sents the balance attribute she wants to retrieve. AB .=4GC () == false
is a commonly used conditional check to decide whether a partic-
ular record exists or not. In this case, R��� �rst determines which
SELECT query AB refers to, and then generates a Z3P� formula “ta-
ble_[name](pkey) == nil”, where =0<4 and ?:4~ stand for the
corresponding table name and primary key in that query.

In the end, the output of C�������� is a set of tuples, each of
which consists of > , pcond, and arg, standing for the side e�ect, path
condition, and arguments, respectively. Examples are in Table 2.

4.3 Checking rules
As depicted in Figure 4, C������ takes the database speci�cations
and the ho, pcond, argi tuples generated by C�������� as input,
and performs two checks, namely the commutativity and semantics
check, to �gure out the con�icting side e�ect pairs.
Commutativity check. For two operations D1 and D2, assume
their side e�ects and arguments are h>1, arg1i and h>2, arg2i, re-
spectively. The commutativity check is relatively straightforward
and well studied in the literature [25, 55], and concentrates only
on side e�ects. Here, we check, for any reachable state B of a target
application, whether the following assertion is satis�ed:

>1 (>2 (B, arg2), arg1) = >2 (>1 (B, arg1), arg2)
This assertion says that two side e�ects are commutative if ap-

plying them against the same initial state in di�erent orders leads
to the same �nal state. Take the problematic concurrent execution
shown in Figure 3a, for example. The side e�ects of UpdateCustomer
are not self-commutative; thus, R��� adds a restriction over any pair
of UpdateCustomer operations.

Additionally, for a transaction containing complex loops with
non-independent iterations, it is hard for R��� to infer their side
e�ects. In this case, we resort to a conservative but safe strategy,

where the corresponding transaction will be marked as con�icting
with all other side e�ects that have write-write con�icts with it.
Semantics check.To ensure the transitioning from a non-replicated
serializable code into its geo-replicated version is correct, we per-
form semantics check by asserting for any concurrent execution
of two operations D1 and D2, the application of their side e�ects
against a valid state in a serial order will not lead to an unreachable
state in the non-replicated version. Formally, let >1 be the side e�ect
of D1, >2 and > 02 be the side e�ect of D2 generated when D2 misses or
sees >1, we should assert that the two operations D1 and D2 can be
executed without restriction if (1) >2 is a no-op side e�ect (i.e., miss-
ing the side e�ect of D1, D2 produces no side e�ect); or (2) >2 = > 02
(i.e., D2 produces the same side e�ect regardless of the existence
of D1). Finally, we translate the above principle into checking the
following formula:

For any reachable state B , (B ,arg2) satisfying ?2>=32
) (>1(B , arg1), arg2) satis�es ?2>=32.

We use two following counter-examples to illustrate this idea.
First, as shown in Figure 3b, imagine we run two withdraws simul-
taneously against an initial state (balance is 100) where they want
to deduct 50 (denoted as D1) and 60 (denoted as D2) from the shared
account, respectively. If D1 sees the side e�ect of D2 (the remaining
balance is 40), then the side e�ect of D1 will never be generated. In
this case, without ordering the execution of these two operations
may lead to violations in the intended application semantics that
balance should never be negative. Thus, R��� automatically adds a
restriction over D1 and D2.

Take RUBiS as another counter-example, placebid is to bid on an
item when the corresponding auction is still open, while closeAuc-
tion terminates an auction and declares the winner. When placebid
did not see the side e�ects of closeAuction, it would continue to bid
for an auction that was already closed. As closeAuction may miss

AutoGR —— Rigi —— Collector

Optimizations:

 - CRDTs support
 e.g., “Last-Writer-Win (LWW)” strategy for merging concurrent updates.

 - Uniqueness
 Support database’s AUTOINCREMENTAL feature.

Abstract
Syntax Tree

depth-first-search
algorithm

TRAN
SLATE

DBLIB

Z3PY Code

drop abort or
read-only path

App Code

Database
Schema

Control
Flow Graph

Database
Specification

 <side effect,
path condition>

collection

AutoGR —— Rigi —— Checker

 Commutativity check:

 Semantics check:

Check the commutativity of side-effects to ensure the convergence of the system.

 If the side-effect of operation A can be generated without seeing the side-effect of
operation B, then it must be able to be generated when seeing the side-effect of operation B.

AutoGR —— Rigi —— Checker

 Commutativity check:

 Semantics check:

Check the commutativity of side-effects to ensure the convergence of the system.

 If the side-effect of operation A can be generated without seeing the side-effect of
operation B, then it must be able to be generated when seeing the side-effect of operation B.

³ ´

³ ´

³ ´

³ ´

(a) Violating execution 1 (b) Violating execution 2 (c) Correct execution.

Figure 3: Three possible executions of geo-replicated services without coordination. Ellipses represent states. Dashed boxes
represent user requests, while the dotted boxes and gray boxes indicate their path conditions and side e�ects, respectively.
The serial order established by solid arrows corresponds to the execution of generating and applying side e�ects at a site. The
dashed arrows indicate the propagation and replication of side e�ects from a site to another.

update queries such as INSERT, UPDATE, and DELETE. In the end, it
commits all side e�ects and makes the changes persistent.

3.2 A motivating example
Next, we use a simpli�ed banking system as amotivating example to
explain the design principles behind R��� for identifying con�icting
operations and generating ordering restrictions. The system has
three operations, namely, Withdraw, Deposit, and UpdateCustomer.
The pseudocode ofWithdraw is shown in Figure 2, and we omit the
other two in the interest of space. Figure 3 gives three concurrent
executions of these operations with no coordination placed.

Figure 3a illustrates an example of replicating non-commutative
side e�ects. Two concurrent requests of the UpdateCustomer oper-
ation are submitted to two data centers to change the location of
“Bob” from “NYC” to “LON” and “FRA,” respectively. When the side
e�ects of the two requests were replicated across the two sites in
di�erent orders, the resulting states would di�er. This violates a
critical system property called state convergence [43]. To preclude
this kind of anomalies, we need to check the commutativity of side
e�ects produced by operations in a pair-wise fashion and add a
restriction to coordinate the generation of any pairs of side e�ects
that do not commute.

Figure 3b shows an example using the side e�ects of two concur-
rent Withdraw requests. Although the two side e�ects commute,
this execution is still invalid. This is because the path conditions
established at the primary replica could be invalidated by the con-
current execution of other operations. In this example, the path
condition for the side e�ect of a successful withdrawal would be
balance � money � 0. Clearly, the condition holds in the primary
replica of the two simultaneousWithdraw requests. Nevertheless,
it becomes false when the side e�ect reaches the other (remote) site.
Application of the side e�ects of both requests results in a negative
balance value, violating the expected invariant. To preclude this
type of violations, we need to derive a semantics check to determine
if we should add a restriction between the pair of side e�ects that
are not invariant preserving.

Unlike the above two harmful concurrent executions, Figure 3c
represents a correct one, where aWithdraw can run concurrently
with a Deposit, for which the reason is two-fold. First, their side
e�ects are commutative. Second, the conditions corresponding to
the two identi�ed side e�ects are compatible, i.e., the side e�ect of
Deposits will not invalidate the condition of successful Withdraws,
and vice versa. This indicates that no coordination should be placed
to restrict the generation and replication of the two side e�ects.

3.3 Challenges and opportunities
Inspired by the examples shown in Figure 3, the correctness require-
ment implies that the geo-replicated version should not generate
more states than the original, non-replicated version. Therefore,
we may need to output a restriction over a pair of side e�ects if
they meet either of the following two conditions: a) they are non-
commutative side e�ects and may cause replicas to terminate in a
divergent state that cannot be generated in any serializable order;
and b) the condition leading to one of the two side e�ects might no
longer hold when seeing the other side e�ect.

To detect the two cases without the programmer’s inputs, we
need to “understand” the operations solely from the source code
to infer side e�ects and invariants. First, due to the code struc-
ture of the target applications, for inferring side e�ects, it is suf-
�cient to understand the speci�cations of SQL queries and the
changes induced on arguments that instantiate the queries. Second,
application-speci�c invariants are implicitly encoded into the con-
ditional checks taken at each branch along a control �ow path of
each transaction. As a result, to automatically infer the invariants,
we need to extract and understand the semantics of the path condi-
tion leading to a particular side e�ect. This step requires traversing
all distinct code paths. It may also involve the understanding of
the semantics of SELECT queries, since the variables in the branch
conditional check formula may be fetched from the database.

Identifying con�icting pairs of side e�ects requires us to make
the gathered side e�ects and path conditions veri�able. Here, we
translate them into the code of Z3 [27], and then ask Z3 to check
the commutativity of the side e�ects and the compatibility of their

AutoGR —— Rigi —— Checker

 Commutativity check:

 Semantics check:

Check the commutativity of side-effects to ensure the convergence of the system.

 If the side-effect of operation A can be generated without seeing the side-effect of
operation B, then it must be able to be generated when seeing the side-effect of operation B.

(a) Violating execution 1

³ ´

³ ´

³ ´

³ ´

(b) Violating execution 2

³ ´

³ ´

³ ´

³ ´

(c) Correct execution.

Figure 3: Three possible executions of geo-replicated services without coordination. Ellipses represent states. Dashed boxes
represent user requests, while the dotted boxes and gray boxes indicate their path conditions and side e�ects, respectively.
The serial order established by solid arrows corresponds to the execution of generating and applying side e�ects at a site. The
dashed arrows indicate the propagation and replication of side e�ects from a site to another.

update queries such as INSERT, UPDATE, and DELETE. In the end, it
commits all side e�ects and makes the changes persistent.

3.2 A motivating example
Next, we use a simpli�ed banking system as amotivating example to
explain the design principles behind R��� for identifying con�icting
operations and generating ordering restrictions. The system has
three operations, namely, Withdraw, Deposit, and UpdateCustomer.
The pseudocode ofWithdraw is shown in Figure 2, and we omit the
other two in the interest of space. Figure 3 gives three concurrent
executions of these operations with no coordination placed.

Figure 3a illustrates an example of replicating non-commutative
side e�ects. Two concurrent requests of the UpdateCustomer oper-
ation are submitted to two data centers to change the location of
“Bob” from “NYC” to “LON” and “FRA,” respectively. When the side
e�ects of the two requests were replicated across the two sites in
di�erent orders, the resulting states would di�er. This violates a
critical system property called state convergence [43]. To preclude
this kind of anomalies, we need to check the commutativity of side
e�ects produced by operations in a pair-wise fashion and add a
restriction to coordinate the generation of any pairs of side e�ects
that do not commute.

Figure 3b shows an example using the side e�ects of two concur-
rent Withdraw requests. Although the two side e�ects commute,
this execution is still invalid. This is because the path conditions
established at the primary replica could be invalidated by the con-
current execution of other operations. In this example, the path
condition for the side e�ect of a successful withdrawal would be
balance � money � 0. Clearly, the condition holds in the primary
replica of the two simultaneousWithdraw requests. Nevertheless,
it becomes false when the side e�ect reaches the other (remote) site.
Application of the side e�ects of both requests results in a negative
balance value, violating the expected invariant. To preclude this
type of violations, we need to derive a semantics check to determine
if we should add a restriction between the pair of side e�ects that
are not invariant preserving.

Unlike the above two harmful concurrent executions, Figure 3c
represents a correct one, where aWithdraw can run concurrently
with a Deposit, for which the reason is two-fold. First, their side
e�ects are commutative. Second, the conditions corresponding to
the two identi�ed side e�ects are compatible, i.e., the side e�ect of
Deposits will not invalidate the condition of successful Withdraws,
and vice versa. This indicates that no coordination should be placed
to restrict the generation and replication of the two side e�ects.

3.3 Challenges and opportunities
Inspired by the examples shown in Figure 3, the correctness require-
ment implies that the geo-replicated version should not generate
more states than the original, non-replicated version. Therefore,
we may need to output a restriction over a pair of side e�ects if
they meet either of the following two conditions: a) they are non-
commutative side e�ects and may cause replicas to terminate in a
divergent state that cannot be generated in any serializable order;
and b) the condition leading to one of the two side e�ects might no
longer hold when seeing the other side e�ect.

To detect the two cases without the programmer’s inputs, we
need to “understand” the operations solely from the source code
to infer side e�ects and invariants. First, due to the code struc-
ture of the target applications, for inferring side e�ects, it is suf-
�cient to understand the speci�cations of SQL queries and the
changes induced on arguments that instantiate the queries. Second,
application-speci�c invariants are implicitly encoded into the con-
ditional checks taken at each branch along a control �ow path of
each transaction. As a result, to automatically infer the invariants,
we need to extract and understand the semantics of the path condi-
tion leading to a particular side e�ect. This step requires traversing
all distinct code paths. It may also involve the understanding of
the semantics of SELECT queries, since the variables in the branch
conditional check formula may be fetched from the database.

Identifying con�icting pairs of side e�ects requires us to make
the gathered side e�ects and path conditions veri�able. Here, we
translate them into the code of Z3 [27], and then ask Z3 to check
the commutativity of the side e�ects and the compatibility of their

Case Study

 - SmallBank (codebase 2.5k, 5 transactions):
 Simulating an online banking system.

 - RUBiS (codebase 9.8k, 16 transactions):
 An eBay-like online auction website.

 - SeatsReservation (codebase 5.0k, 6 transactions):
 An electronic airline ticketing service.

 - HealthPlus (codebase 15.7k, 157 transactions):
 A real-world deployable management system for health care facility.

Case Study —— Static analysis

Lines of Z3Py Code Generated by Rigi
Analysis Cost Restriction Rate

(Normal / Opt)Database Path condition Side effect

SmallBank 29 38 119 ~ 24s 20% / 20%

RUBiS 113 62 191 ~ 3.4min 23% / 9%

Seats 267 65 207 ~ 6.7min 39% / 31%

HealthPlus
524 1113 1387 ~ 1.5h

(~ 7.7min for
16 threads)

2.9% / 1.4%

Considering that the analysis is a one-time and offline job, the cost is moderate.

Case Study —— Geo-replication

0

5

10

15

AP US EU

La
te
nc
y
(m
s)

(a) SmallBank

0

10

20

30

40

AP US EU
La
te
nc
y
(m
s)

(b) RUBiS (c) Seats (d) HealthPlus

Figure 6: Average latency perceived by users at di�erent sites across four system con�gurations (lower is better)

semantics checks dominate the analysis cost and the cost of per-
forming these checks exhibits quadratic growth. Among the four
applications, it takes the least time cost to analyze SmallBank, as
the side e�ects and conditions of this application are relatively
straightforward, plus it requires the least number of checks. Al-
though Seats contains fewer transactions than RUBiS, it takes a
longer time to complete the static analysis. This is due to the fol-
lowing two reasons. First, some transactions in Seats have more
paths than RUBiS. Second, some paths of Seats contain more update
queries than RUBiS. Thus, the analysis of Seats is more complex
than RUBiS. HealthPlus observes the longest analysis time due to
its larger transaction space.

When switching to Opt, the time for computing the DB speci�-
cations and collecting pairs of conditions and side e�ects remains
almost the same across the four applications. SmallBank observes
no change in the checking time since its checks are not a�ected
(see Table 4). However, we observe an up to 58.38% reduction in the
commutativity checking time for the remaining three applications.
This result is consistent with the elimination of failed commuta-
tivity checks in Table 4. Furthermore, the semantics checking time
has also been reduced for RUBiS and HealthPlus, except Seats. This
is because the semantics checks of Seats remain the same.

Additionally, with 16 threads, R��� under the Normal mode in-
troduces a 3.2-11.5- speedup of the static analysis time for the four
examined applications, e.g., in the largest improvement, it reduces
the time cost of analyzing HealthPlus from 5351.209s to 465.402s.
Thus, we conclude that given the analysis is a one-time and of-
�ine job, the cost is moderate, and R��� scales well to applications
with larger sizes. Note that even for experienced experts with state-
of-the-art tools like PoR, it may take a few days for small-scale
applications and usually it is infeasible for large ones. Thus the
analysis cost saving is tremendous, not to mention that the whole
process is fully automated with little manual e�ort.

5.2 Geo-replication
System con�gurations. We run geo-replicated experiments on
EC2 m4.2xlarge virtual machines (VM) across three sites: Asia-
Paci�c-Southeast (AP), US-West (US), and EU-Central (EU). Each
VM has 8 vCPUs, 32 GB of RAM, and runs Ubuntu 16.04, MySQL
5.5, Tomcat 6.0, and Java 8. The average round-trip latency between
any pair of the three sites ranges from 157 to 169ms.

We deploy A���GR across the three sites, where each site has
a database server host a copy of replicated data, a coordinator to
participate in a Paxos-like consensus protocol [22], and a proxy
that is attached to the original application code to execute user
requests via A���GR. We run applications with two di�erent con-
�gurations: (a) we con�gure A���GR with the set of restrictions

identi�ed by R��� without the commutative transformation (de-
noted as “A���GR-Normal”); and (b) we con�gure A���GR with
the set of restrictions identi�ed when the commutative transforma-
tion is enabled (denoted as “A���GR-Opt”).
Baselines. We deploy two baselines: (1) a geo-replicated service
spanning three sites but serializing all updates, which is a standard
deployment o�ering strong consistency and requiring no manual
work, denoted as “Strong”; and (2) a three-site geo-replicated service
coordinating use requests guided by the aforementioned manually
identi�ed restrictions (denoted as “Manual”).
Datasets and workloads. The dataset of RUBiS is generated using
the following parameters: 500,000 old items, 33,000 active items, and
1,000,000 users. We populate a 1.3-2.5 GB database with randomly
generated records for the remaining three applications. RUBiS runs
the representative bidding mix workload, which consists of 85%
read-only transactions and 15% update transactions. For the other
three applications, we generate workloads for them by following
the RUBiS’s setup. Users are evenly distributed across the three
sites, issuing requests in a close loop to the replica at the closest
proximity. We measure average user-observed latency per site and
the aggregated throughput across sites by adding up their individual
values. For each evaluation point, we repeat experiments three times
and report the average.
User-observed latency. The primary goal of our proposal is to au-
tomatically transition non-replicated applications to be geo-replicat-
ed with enhanced performance in terms of low user perceived la-
tency. Figure 6 summarizes the average latency observed by users
at di�erent sites across all system con�gurations. The error bars
represent standard deviation. For all applications except HealthPlus,
compared to “Manual”, “A���GR-Opt” achieves similar latency
performance. This �nding is consistent with the results obtained in
the case studies section that R��� with the commutative transfor-
mation option enabled can identify the same restriction set as PoR
consistency does. We do not show such a comparison for HealthPlus
since the manual analysis is infeasible for such a large codebase.
In comparison with “Strong”, “A���GR-Opt” reduces the user ob-
served latency from 39.8% to 61.8% for all four applications. This
is because the set of identi�ed restrictions is minimal and only a
small fraction of requests that need cross-site coordination, while
in “Strong” all update requests are coordinated. Among the four
applications, the latency improvement of RUBiS is the best, while
that of Seats is the worst. This is because with the A���GR-Opt
setting, RUBiS imposes the fewest number of restrictions, but Seats
needs the most.

“A���GR-Normal” achieves 24.84% to 54.1% lower user observed
latency than “Strong” for RUBiS, SmallBank, and HealthPlus, but
behaves similarly as “Strong” for Seats. This result is consistent

0

1

2

3

SmallBank RUBiS Seats Healthplus

N
or
m
al
iz
ed

pe
ak

th
ro
ug
hp
ut

Manual
AutoGR-Opt

AutoGR-Normal
Strong

Figure 7: Normalized peak throughput numbers

with the restrictions identi�ed by R��� without the commutative
transformation. In that case, “A���GR-Normal” almost serializes
all update transactions for Seats. Finally, “A���GR-Opt” achieves
the same performance as “A���GR-Normal” for SmallBank and
HealthPlus for di�erent reasons. For SmallBank, “Opt” does not
eliminate its restrictions. Unlike this, even the number of restric-
tions drops in HealthPlus, the limited performance improvement is
because the workload is random and the number of user requests,
whose side e�ects are restricted by A���GR-Normal but freed by
A���GR-Opt, accounts for a quite small fraction. Therefore, we
expect visible improvements in the presence of more skewed work-
loads. In contrast, “A���GR-Opt” reduces latency from 24.8% to
26.0% than “A���GR-Normal” for both RUBiS.
Peak throughput. Next, we shift our attention to the implication
of peak throughput. Figure 7 illustrates the peak throughput of
di�erent system con�gurations, which is normalized to the peak
throughput of “Strong”. These results are consistent with latency
observed in Figure 6. “A���GR-Opt” performs the best for all ap-
plications. It achieves as good performance as “Manual”, which
represents the best performance gain with the most human inter-
vention for manually identifying restrictions, for all applications
except HealthPlus (Again, we haven’t conducted the manual anal-
ysis for HealthPlus since it can be extremely time-consuming and
also error-prone). “A���GR-Opt” achieves a speedup ranging from
1.39 to 2.12 times, compared to “Strong”. Finally, if we disable the
commutative transformation, “A���GR-Normal” still introduces a
1.22-2.12⇥ speedup of peak throughput for all applications except
Seats. The reasons for throughput comparison are similar to those
of the latency comparison we presented above.

6 RELATEDWORK
Geo-Replicated Systems. Many cloud storage systems o�er geo-
replication features [11, 15, 24, 26, 28], assuming either strong or
eventual consistency [24, 26, 28]. Recently, Azure CosmosDB [15]
and Google Cloud DataStore [11] provide a set of APIs that read
data with di�erent consistency guarantees, but they still serial-
ize updates for strong consistency. Unlike them, A���GR follows
restriction-based consistency models, and automatically enables
the geo-replication feature for un-replicated applications with en-
hanced performance without requiring developers to identify manu-
ally problematic concurrent executions that should be coordinated.
Consistency models and �ne-grained coordination. To close
the gap between strong and eventual consistency, hybrid consis-
tencymodels, such as RedBlue consistency [35], have been proposed
to allow strongly and causally consistent operations to co-exist in
a single system. Recently, to minimize the coordination in geo-
replication, �ne-grained consistency proposals such as PoR con-
sistency [36] completely drop the de�nition of consistency levels

and instead map the consistency semantics into a set of ordering
restrictions over pairs of operations (analogous to “con�ict relation”
in Generic Broadcast [42]). Our approach is built on top of this line
of work and extends them for two main aspects – a) we build an
automated analysis tool, which identi�es the required restrictions
and free programmers from the error-prone and time-consuming
task; and b) we o�er an end-to-end solution for automatically de-
ploying non-replicated serializable applications as geo-replicated
with enhanced performance and preserved application semantics.
Tool supports. Some recent proposals aim to relieve developers’
burdens to adapt their applications to use �ne-grained consistency
models in geo-replicated scenarios [17, 30, 34]. SIEVE statically
computes the weakest preconditions which lead to side e�ects that
always preserve invariants [34]. Indigo [20] checks whether the
concurrent execution of a pair of operations would violate invari-
ants and provides a set of mechanisms to resolve con�icts. Hamsaz
takes a sequential object as input and automatically synthesizes a
replicated object that avoids unnecessary coordination [31]. These
works rely on speci�cations and application-speci�c invariants that
programmers need to write manually. Unlike them, R��� does not
assume the existence of speci�cations; instead, it infers the side
e�ects and their path conditions solely from the source code. MixT
is a language for designing geo-distributed transactions [38], where
di�erent levels of consistency are associated with the attributes of
database tables. However, this approach requires programmers to
re-implement their applications using MixT. The goal of IPA [19] is
orthogonal to ours, as it ensures invariants on an eventually con-
sistent replicated store by repairing and compensating violations
introduced by running con�icting operations in parallel.
CRDTs. We signi�cantly di�er from CRDTs [44, 48] by (1) the
primary interest of A���GR and R��� is to identify pairs of non-
commutative side e�ects based on the original code rather than
improving operation commutativity; and (2) convergence alone
cannot prevent invariant violations, which can be avoided by R���’s
semantics checks and A���GR’s runtime coordination. Further-
more, CRDTs are complementary to our proposal, and A���GR can
be extended to incorporate more CRDTs, as some case-study appli-
cations show limited commutativity and the use of LWW indeed
leads to fewer restrictions and better geo-replication performance.

7 CONCLUSION
We present A���GR – an automated end-to-end framework for
deploying non-replicated applications as geo-replicated. The core
of A���GR is a static analysis tool R��� that automatically identi�es
necessary restrictions without user interventions. Experimental
results show that A���GR has the following bene�ts: (1) low rea-
soning cost, (2) optimal performance, and (3) little manual e�ort.

ACKNOWLEDGMENTS
We sincerely thank all anonymous reviewers for their insightful
feedback. This work was supported by National Nature Science
Foundation of China (61802358, 61832011, 61922039), USTC Re-
search Funds of the Double First-Class Initiative (YD2150002006),
and National Science Foundation (CCF-1756013, IIS-1838024, and
CAREER-2048044). Cheng Li is the corresponding author.

Average latency perceived by users Normalized peak throughput numbers

(a) SmallBank (b) RUBiS

0
10
20
30
40
50
60

AP US EU

La
te
nc
y
(m
s)

(c) Seats

0
20
40
60
80
100

AP US EU

La
te
nc
y
(m
s)

(d) HealthPlus

Figure 6: Average latency perceived by users at di�erent sites across four system con�gurations (lower is better)

semantics checks dominate the analysis cost and the cost of per-
forming these checks exhibits quadratic growth. Among the four
applications, it takes the least time cost to analyze SmallBank, as
the side e�ects and conditions of this application are relatively
straightforward, plus it requires the least number of checks. Al-
though Seats contains fewer transactions than RUBiS, it takes a
longer time to complete the static analysis. This is due to the fol-
lowing two reasons. First, some transactions in Seats have more
paths than RUBiS. Second, some paths of Seats contain more update
queries than RUBiS. Thus, the analysis of Seats is more complex
than RUBiS. HealthPlus observes the longest analysis time due to
its larger transaction space.

When switching to Opt, the time for computing the DB speci�-
cations and collecting pairs of conditions and side e�ects remains
almost the same across the four applications. SmallBank observes
no change in the checking time since its checks are not a�ected
(see Table 4). However, we observe an up to 58.38% reduction in the
commutativity checking time for the remaining three applications.
This result is consistent with the elimination of failed commuta-
tivity checks in Table 4. Furthermore, the semantics checking time
has also been reduced for RUBiS and HealthPlus, except Seats. This
is because the semantics checks of Seats remain the same.

Additionally, with 16 threads, R��� under the Normal mode in-
troduces a 3.2-11.5- speedup of the static analysis time for the four
examined applications, e.g., in the largest improvement, it reduces
the time cost of analyzing HealthPlus from 5351.209s to 465.402s.
Thus, we conclude that given the analysis is a one-time and of-
�ine job, the cost is moderate, and R��� scales well to applications
with larger sizes. Note that even for experienced experts with state-
of-the-art tools like PoR, it may take a few days for small-scale
applications and usually it is infeasible for large ones. Thus the
analysis cost saving is tremendous, not to mention that the whole
process is fully automated with little manual e�ort.

5.2 Geo-replication
System con�gurations. We run geo-replicated experiments on
EC2 m4.2xlarge virtual machines (VM) across three sites: Asia-
Paci�c-Southeast (AP), US-West (US), and EU-Central (EU). Each
VM has 8 vCPUs, 32 GB of RAM, and runs Ubuntu 16.04, MySQL
5.5, Tomcat 6.0, and Java 8. The average round-trip latency between
any pair of the three sites ranges from 157 to 169ms.

We deploy A���GR across the three sites, where each site has
a database server host a copy of replicated data, a coordinator to
participate in a Paxos-like consensus protocol [22], and a proxy
that is attached to the original application code to execute user
requests via A���GR. We run applications with two di�erent con-
�gurations: (a) we con�gure A���GR with the set of restrictions

identi�ed by R��� without the commutative transformation (de-
noted as “A���GR-Normal”); and (b) we con�gure A���GR with
the set of restrictions identi�ed when the commutative transforma-
tion is enabled (denoted as “A���GR-Opt”).
Baselines. We deploy two baselines: (1) a geo-replicated service
spanning three sites but serializing all updates, which is a standard
deployment o�ering strong consistency and requiring no manual
work, denoted as “Strong”; and (2) a three-site geo-replicated service
coordinating use requests guided by the aforementioned manually
identi�ed restrictions (denoted as “Manual”).
Datasets and workloads. The dataset of RUBiS is generated using
the following parameters: 500,000 old items, 33,000 active items, and
1,000,000 users. We populate a 1.3-2.5 GB database with randomly
generated records for the remaining three applications. RUBiS runs
the representative bidding mix workload, which consists of 85%
read-only transactions and 15% update transactions. For the other
three applications, we generate workloads for them by following
the RUBiS’s setup. Users are evenly distributed across the three
sites, issuing requests in a close loop to the replica at the closest
proximity. We measure average user-observed latency per site and
the aggregated throughput across sites by adding up their individual
values. For each evaluation point, we repeat experiments three times
and report the average.
User-observed latency. The primary goal of our proposal is to au-
tomatically transition non-replicated applications to be geo-replicat-
ed with enhanced performance in terms of low user perceived la-
tency. Figure 6 summarizes the average latency observed by users
at di�erent sites across all system con�gurations. The error bars
represent standard deviation. For all applications except HealthPlus,
compared to “Manual”, “A���GR-Opt” achieves similar latency
performance. This �nding is consistent with the results obtained in
the case studies section that R��� with the commutative transfor-
mation option enabled can identify the same restriction set as PoR
consistency does. We do not show such a comparison for HealthPlus
since the manual analysis is infeasible for such a large codebase.
In comparison with “Strong”, “A���GR-Opt” reduces the user ob-
served latency from 39.8% to 61.8% for all four applications. This
is because the set of identi�ed restrictions is minimal and only a
small fraction of requests that need cross-site coordination, while
in “Strong” all update requests are coordinated. Among the four
applications, the latency improvement of RUBiS is the best, while
that of Seats is the worst. This is because with the A���GR-Opt
setting, RUBiS imposes the fewest number of restrictions, but Seats
needs the most.

“A���GR-Normal” achieves 24.84% to 54.1% lower user observed
latency than “Strong” for RUBiS, SmallBank, and HealthPlus, but
behaves similarly as “Strong” for Seats. This result is consistent

(a) SmallBank (b) RUBiS (c) Seats (d) HealthPlus

Figure 6: Average latency perceived by users at di�erent sites across four system con�gurations (lower is better)

semantics checks dominate the analysis cost and the cost of per-
forming these checks exhibits quadratic growth. Among the four
applications, it takes the least time cost to analyze SmallBank, as
the side e�ects and conditions of this application are relatively
straightforward, plus it requires the least number of checks. Al-
though Seats contains fewer transactions than RUBiS, it takes a
longer time to complete the static analysis. This is due to the fol-
lowing two reasons. First, some transactions in Seats have more
paths than RUBiS. Second, some paths of Seats contain more update
queries than RUBiS. Thus, the analysis of Seats is more complex
than RUBiS. HealthPlus observes the longest analysis time due to
its larger transaction space.

When switching to Opt, the time for computing the DB speci�-
cations and collecting pairs of conditions and side e�ects remains
almost the same across the four applications. SmallBank observes
no change in the checking time since its checks are not a�ected
(see Table 4). However, we observe an up to 58.38% reduction in the
commutativity checking time for the remaining three applications.
This result is consistent with the elimination of failed commuta-
tivity checks in Table 4. Furthermore, the semantics checking time
has also been reduced for RUBiS and HealthPlus, except Seats. This
is because the semantics checks of Seats remain the same.

Additionally, with 16 threads, R��� under the Normal mode in-
troduces a 3.2-11.5- speedup of the static analysis time for the four
examined applications, e.g., in the largest improvement, it reduces
the time cost of analyzing HealthPlus from 5351.209s to 465.402s.
Thus, we conclude that given the analysis is a one-time and of-
�ine job, the cost is moderate, and R��� scales well to applications
with larger sizes. Note that even for experienced experts with state-
of-the-art tools like PoR, it may take a few days for small-scale
applications and usually it is infeasible for large ones. Thus the
analysis cost saving is tremendous, not to mention that the whole
process is fully automated with little manual e�ort.

5.2 Geo-replication
System con�gurations. We run geo-replicated experiments on
EC2 m4.2xlarge virtual machines (VM) across three sites: Asia-
Paci�c-Southeast (AP), US-West (US), and EU-Central (EU). Each
VM has 8 vCPUs, 32 GB of RAM, and runs Ubuntu 16.04, MySQL
5.5, Tomcat 6.0, and Java 8. The average round-trip latency between
any pair of the three sites ranges from 157 to 169ms.

We deploy A���GR across the three sites, where each site has
a database server host a copy of replicated data, a coordinator to
participate in a Paxos-like consensus protocol [22], and a proxy
that is attached to the original application code to execute user
requests via A���GR. We run applications with two di�erent con-
�gurations: (a) we con�gure A���GR with the set of restrictions

identi�ed by R��� without the commutative transformation (de-
noted as “A���GR-Normal”); and (b) we con�gure A���GR with
the set of restrictions identi�ed when the commutative transforma-
tion is enabled (denoted as “A���GR-Opt”).
Baselines. We deploy two baselines: (1) a geo-replicated service
spanning three sites but serializing all updates, which is a standard
deployment o�ering strong consistency and requiring no manual
work, denoted as “Strong”; and (2) a three-site geo-replicated service
coordinating use requests guided by the aforementioned manually
identi�ed restrictions (denoted as “Manual”).
Datasets and workloads. The dataset of RUBiS is generated using
the following parameters: 500,000 old items, 33,000 active items, and
1,000,000 users. We populate a 1.3-2.5 GB database with randomly
generated records for the remaining three applications. RUBiS runs
the representative bidding mix workload, which consists of 85%
read-only transactions and 15% update transactions. For the other
three applications, we generate workloads for them by following
the RUBiS’s setup. Users are evenly distributed across the three
sites, issuing requests in a close loop to the replica at the closest
proximity. We measure average user-observed latency per site and
the aggregated throughput across sites by adding up their individual
values. For each evaluation point, we repeat experiments three times
and report the average.
User-observed latency. The primary goal of our proposal is to au-
tomatically transition non-replicated applications to be geo-replicat-
ed with enhanced performance in terms of low user perceived la-
tency. Figure 6 summarizes the average latency observed by users
at di�erent sites across all system con�gurations. The error bars
represent standard deviation. For all applications except HealthPlus,
compared to “Manual”, “A���GR-Opt” achieves similar latency
performance. This �nding is consistent with the results obtained in
the case studies section that R��� with the commutative transfor-
mation option enabled can identify the same restriction set as PoR
consistency does. We do not show such a comparison for HealthPlus
since the manual analysis is infeasible for such a large codebase.
In comparison with “Strong”, “A���GR-Opt” reduces the user ob-
served latency from 39.8% to 61.8% for all four applications. This
is because the set of identi�ed restrictions is minimal and only a
small fraction of requests that need cross-site coordination, while
in “Strong” all update requests are coordinated. Among the four
applications, the latency improvement of RUBiS is the best, while
that of Seats is the worst. This is because with the A���GR-Opt
setting, RUBiS imposes the fewest number of restrictions, but Seats
needs the most.

“A���GR-Normal” achieves 24.84% to 54.1% lower user observed
latency than “Strong” for RUBiS, SmallBank, and HealthPlus, but
behaves similarly as “Strong” for Seats. This result is consistent

 - Compare with human-intervention-free
automated approaches: reduces up to 61.8%
latency and achieves up to 2.12× higher peak
throughput.

 - Compare with manual analysis approaches:
quickly enable the geo-replication feature with
zero human intervention while offering similarly
low latency and high throughput.

Thank You !

